OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 7 — Jul. 1, 2014
  • pp: 1993–2008

Artificially-induced organelles are optimal targets for optical trapping experiments in living cells

C. López-Quesada, A.-S. Fontaine, A. Farré, M. Joseph, J. Selva, G. Egea, M. D. Ludevid, E. Martín-Badosa, and M. Montes-Usategui  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 7, pp. 1993-2008 (2014)
http://dx.doi.org/10.1364/BOE.5.001993


View Full Text Article

Enhanced HTML    Acrobat PDF (2874 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical trapping supplies information on the structural, kinetic or rheological properties of inner constituents of the cell. However, the application of significant forces to intracellular objects is notoriously difficult due to a combination of factors, such as the small difference between the refractive indices of the target structures and the cytoplasm. Here we discuss the possibility of artificially inducing the formation of spherical organelles in the endoplasmic reticulum, which would contain densely packed engineered proteins, to be used as optimized targets for optical trapping experiments. The high index of refraction and large size of our organelles provide a firm grip for optical trapping and thereby allow us to exert large forces easily within safe irradiation limits. This has clear advantages over alternative probes, such as subcellular organelles or internalized synthetic beads.

© 2014 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(170.1530) Medical optics and biotechnology : Cell analysis
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Traps, Manipulation, and Tracking

History
Original Manuscript: April 4, 2014
Revised Manuscript: May 24, 2014
Manuscript Accepted: May 25, 2014
Published: May 30, 2014

Citation
C. López-Quesada, A.-S. Fontaine, A. Farré, M. Joseph, J. Selva, G. Egea, M. D. Ludevid, E. Martín-Badosa, and M. Montes-Usategui, "Artificially-induced organelles are optimal targets for optical trapping experiments in living cells," Biomed. Opt. Express 5, 1993-2008 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-7-1993


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. D. Hoffman and J. C. Crocker, “Cell mechanics: dissecting the physical responses of cells to force,” Annu. Rev. Biomed. Eng.11(1), 259–288 (2009). [CrossRef] [PubMed]
  2. B. D. Hoffman, C. Grashoff, and M. A. Schwartz, “Dynamic molecular processes mediate cellular mechanotransduction,” Nature475(7356), 316–323 (2011). [CrossRef] [PubMed]
  3. Y. F. Dufrêne, E. Evans, A. Engel, J. Helenius, H. E. Gaub, and D. J. Müller, “Five challenges to bringing single-molecule force spectroscopy into living cells,” Nat. Methods8(2), 123–127 (2011). [CrossRef] [PubMed]
  4. M. T. Wei, A. Zaorski, H. C. Yalcin, J. Wang, S. N. Ghadiali, A. Chiou, and H. D. Ou-Yang, “A comparative study of living cell micromechanical properties by oscillatory optical tweezers,” Opt. Express16(12), 8594–8603 (2008). [CrossRef] [PubMed]
  5. T. Ketelaar, H. S. van der Honing, and A. M. C. Emons, “Probing cytoplasmic organization and the actin cytoskeleton of plant cells with optical tweezers,” Biochem. Soc. Trans.38(3), 823–828 (2010). [CrossRef] [PubMed]
  6. I. A. Sparkes, T. Ketelaar, N. C. A. de Ruijter, and C. Hawes, “Grab a Golgi: laser trapping of Golgi bodies reveals in vivo interactions with the endoplasmic reticulum,” Traffic10(5), 567–571 (2009). [CrossRef] [PubMed]
  7. C. Hawes, A. Osterrieder, I. A. Sparkes, and T. Ketelaar, “Optical tweezers for the micromanipulation of plant cytoplasm and organelles,” Curr. Opin. Plant Biol.13(6), 731–735 (2010). [CrossRef] [PubMed]
  8. M. X. Andersson, M. Goksör, and A. S. Sandelius, “Optical manipulation reveals strong attracting forces at membrane contact sites between endoplasmic reticulum and chloroplasts,” J. Biol. Chem.282(2), 1170–1174 (2007). [CrossRef] [PubMed]
  9. K. Hayakawa, H. Tatsumi, and M. Sokabe, “Actin stress fibers transmit and focus force to activate mechanosensitive channels,” J. Cell Sci.121(4), 496–503 (2008). [CrossRef] [PubMed]
  10. G. T. Shubeita, S. L. Tran, J. Xu, M. Vershinin, S. Cermelli, S. L. Cotton, M. A. Welte, and S. P. Gross, “Consequences of motor copy number on the intracellular transport of Kinesin-1-driven lipid droplets,” Cell135, 1098–1107 (2008). [CrossRef] [PubMed]
  11. C. Leidel, R. A. Longoria, F. M. Gutierrez, and G. T. Shubeita, “Measuring molecular motor forces in vivo: implications for tug-of-war models of bidirectional transport,” Biophys. J.103(3), 492–500 (2012). [CrossRef] [PubMed]
  12. J. Yoo, T. Kambara, K. Gonda, and H. Higuchi, “Intracellular imaging of targeted proteins labeled with quantum dots,” Exp. Cell Res.314(19), 3563–3569 (2008). [CrossRef] [PubMed]
  13. R. Bar-Ziv, E. Moses, and P. Nelson, “Dynamic excitations in membranes induced by optical tweezers,” Biophys. J.75(1), 294–320 (1998). [CrossRef] [PubMed]
  14. V. Bormuth, A. Jannasch, M. Ander, C. M. van Kats, A. van Blaaderen, J. Howard, and E. Schäffer, “Optical trapping of coated microspheres,” Opt. Express16(18), 13831–13844 (2008). [CrossRef] [PubMed]
  15. A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics6(7), 469–473 (2012). [CrossRef]
  16. V. Olivier, J.-L. Duval, M. Hindié, P. Pouletaut, and M.-D. Nagel, “Comparative particle-induced cytotoxicity toward macrophages and fibroblasts,” Cell Biol. Toxicol.19(3), 145–159 (2003). [CrossRef] [PubMed]
  17. L. M. Costantini, R. M. Gilberti, and D. A. Knecht, “The phagocytosis and toxicity of amorphous silica,” PLoS ONE6(2), e14647 (2011). [CrossRef] [PubMed]
  18. S. P. Gross, “Come together: group behavior of dynein motors,” Dev. Cell24(2), 117–118 (2013). [CrossRef] [PubMed]
  19. L. B. Oddershede, “Force probing of individual molecules inside the living cell is now a reality,” Nat. Chem. Biol.8(11), 879–886 (2012). [CrossRef] [PubMed]
  20. R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt.38(16), 3651–3661 (1999). [CrossRef] [PubMed]
  21. S. P. Gross, “Application of optical traps in vivo,” Methods Enzymol.361, 162–174 (2003). [CrossRef] [PubMed]
  22. M. A. Welte, S. P. Gross, M. Postner, S. M. Block, and E. F. Wieschaus, “Developmental regulation of vesicle transport in Drosophila embryos: forces and kinetics,” Cell92(4), 547–557 (1998). [CrossRef] [PubMed]
  23. C. Veigel and C. F. Schmidt, “Moving into the cell: single-molecule studies of molecular motors in complex environments,” Nat. Rev. Mol. Cell Biol.12(3), 163–176 (2011). [CrossRef] [PubMed]
  24. A. T. Lada, M. C. Willingham, and R. W. St Clair, “Triglyceride depletion in THP-1 cells alters cholesteryl ester physical state and cholesterol efflux,” J. Lipid Res.43(4), 618–628 (2002). [PubMed]
  25. X. Nan, J. X. Cheng, and X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res.44(11), 2202–2208 (2003). [CrossRef] [PubMed]
  26. D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods3(1), 47–53 (2006). [CrossRef] [PubMed]
  27. T. Watanabe, A. Thayil, A. Jesacher, K. Grieve, D. Debarre, T. Wilson, M. Booth, and S. Srinivas, “Characterisation of the dynamic behaviour of lipid droplets in the early mouse embryo using adaptive harmonic generation microscopy,” BMC Cell Biol.11(1), 38 (2010). [CrossRef] [PubMed]
  28. G. Galili, “ER-derived compartments are formed by highly regulated processes and have special functions in plants,” Plant Physiol.136(3), 3411–3413 (2004). [CrossRef] [PubMed]
  29. M. I. Geli, M. Torrent, and D. Ludevid, “Two structural domains mediate two sequential events in γ-zein targeting: protein endoplasmic reticulum retention and protein body formation,” Plant Cell6(12), 1911–1922 (1994). [PubMed]
  30. M. Torrent, B. Llompart, S. Lasserre-Ramassamy, I. Llop-Tous, M. Bastida, P. Marzabal, A. Westerholm-Parvinen, M. Saloheimo, P. B. Heifetz, and M. D. Ludevid, “Eukaryotic protein production in designed storage organelles,” BMC Biol.7(1), 5 (2009). [CrossRef] [PubMed]
  31. I. Llop-Tous, M. Ortiz, M. Torrent, and M. D. Ludevid, “The expression of a xylanase targeted to ER-protein bodies provides a simple strategy to produce active insoluble enzyme polymers in tobacco plants,” PLoS ONE6(4), e19474 (2011). [CrossRef] [PubMed]
  32. M. Torrent, I. Llop-Tous, and M. D. Ludevid, “Protein body induction: a new tool to produce and recover recombinant proteins in plants,” Methods Mol. Biol.483, 193–208 (2009). [CrossRef] [PubMed]
  33. I. Llop-Tous, S. Madurga, E. Giralt, P. Marzabal, M. Torrent, and M. D. Ludevid, “Relevant elements of a maize gamma-zein domain involved in protein body biogenesis,” J. Biol. Chem.285(46), 35633–35644 (2010). [CrossRef] [PubMed]
  34. E. M. Herman and B. A. Larkins, “Protein storage bodies and vacuoles,” Plant Cell11(4), 601–614 (1999). [CrossRef] [PubMed]
  35. R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J.70(4), 1813–1822 (1996). [CrossRef] [PubMed]
  36. A. Rohrbach, “Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory,” Phys. Rev. Lett.95(16), 168102 (2005). [CrossRef] [PubMed]
  37. K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J.77(5), 2856–2863 (1999). [CrossRef] [PubMed]
  38. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt.9(8), S196–S203 (2007). [CrossRef]
  39. G. Knöner, S. Parkin, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Measurement of the index of refraction of single microparticles,” Phys. Rev. Lett.97(15), 157402 (2006). [CrossRef] [PubMed]
  40. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J.61(2), 569–582 (1992). [CrossRef] [PubMed]
  41. R. Barer and S. Joseph, “Refractometry of living cells, part I. Basic principles,” Q. J. Microsc. Sci.95, 399–423 (1954).
  42. H. Zhao, P. H. Brown, and P. Schuck, “On the distribution of protein refractive index increments,” Biophys. J.100(9), 2309–2317 (2011). [CrossRef] [PubMed]
  43. J. Vörös, “The Density and Refractive Index of Adsorbing Protein Layers,” Biophys. J.87(1), 553–561 (2004). [CrossRef] [PubMed]
  44. H. Fischer, I. Polikarpov, and A. F. Craievich, “Average protein density is a molecular-weight-dependent function,” Protein Sci.13(10), 2825–2828 (2004). [CrossRef] [PubMed]
  45. M. Joseph, M. D. Ludevid, M. Torrent, V. Rofidal, M. Tauzin, M. Rossignol, and J.-B. Peltier, “Proteomic characterisation of endoplasmic reticulum-derived protein bodies in tobacco leaves,” BMC Plant Biol.12(1), 36 (2012). [CrossRef] [PubMed]
  46. R. Barer, “Refractometry and interferometry of living cells,” J. Opt. Soc. Am.47(6), 545–556 (1957). [CrossRef] [PubMed]
  47. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J.88(5), 3689–3698 (2005). [CrossRef] [PubMed]
  48. J. Mas, A. C. Richardson, S. N. S. Reihani, L. B. Oddershede, and K. Berg-Sørensen, “Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells,” Phys. Biol.10(4), 046006 (2013). [CrossRef] [PubMed]
  49. C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A65A(1), 88–92 (2005). [CrossRef] [PubMed]
  50. K. Visscher, S. P. Gross, and S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron.2(4), 1066–1076 (1996). [CrossRef]
  51. K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum.75(3), 594–612 (2004). [CrossRef]
  52. A. Farré, F. Marsà, and M. Montes-Usategui, “Optimized back-focal-plane interferometry directly measures forces of optically trapped particles,” Opt. Express20(11), 12270–12291 (2012). [CrossRef] [PubMed]
  53. J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol.41(3), 369–382 (1996). [CrossRef] [PubMed]
  54. G. F. Zhang and L. A. Staehelin, “Functional compartmentation of the Golgi apparatus of plant cells : immunocytochemical analysis of high-pressure frozen- and freeze-substituted sycamore maple suspension culture cells,” Plant Physiol.99(3), 1070–1083 (1992). [CrossRef] [PubMed]
  55. P. Boevink, K. Oparka, S. Santa Cruz, B. Martin, A. Betteridge, and C. Hawes, “Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network,” Plant J.15(3), 441–447 (1998). [CrossRef] [PubMed]
  56. S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt.50(10), 1581–1590 (2003). [CrossRef]
  57. I. Derényi, F. Jülicher, and J. Prost, “Formation and interaction of membrane tubes,” Phys. Rev. Lett.88(23), 238101 (2002). [CrossRef] [PubMed]
  58. G. Koster, A. Cacciuto, I. Derényi, D. Frenkel, and M. Dogterom, “Force barriers for membrane tube formation,” Phys. Rev. Lett.94(6), 068101 (2005). [CrossRef] [PubMed]
  59. T. Shimmen and E. Yokota, “Cytoplasmic streaming in plants,” Curr. Opin. Cell Biol.16(1), 68–72 (2004). [CrossRef] [PubMed]
  60. I. A. Sparkes, L. Frigerio, N. Tolley, and C. Hawes, “The plant endoplasmic reticulum: a cell-wide web,” Biochem. J.423(2), 145–155 (2009). [CrossRef] [PubMed]
  61. A. Ashkin and J. M. Dziedzic, “Internal cell manipulation using infrared laser traps,” Proc. Natl. Acad. Sci. U.S.A.86(20), 7914–7918 (1989). [CrossRef] [PubMed]
  62. S. Yamada, D. Wirtz, and S. C. Kuo, “Mechanics of living cells measured by laser tracking microrheology,” Biophys. J.78(4), 1736–1747 (2000). [CrossRef] [PubMed]
  63. T. Lobovkina, P. G. Dommersnes, S. Tiourine, J.-F. Joanny, and O. Orwar, “Shape optimization in lipid nanotube networks,” Eur Phys J E Soft Matter26(3), 295–300 (2008). [CrossRef] [PubMed]
  64. E. Yokota, H. Ueda, K. Hashimoto, H. Orii, T. Shimada, I. Hara-Nishimura, and T. Shimmen, “Myosin XI-dependent formation of tubular structures from endoplasmic reticulum isolated from tobacco cultured BY-2 cells,” Plant Physiol.156(1), 129–143 (2011). [CrossRef] [PubMed]
  65. I. Sparkes, J. Runions, C. Hawes, and L. Griffing, “Movement and remodeling of the endoplasmic reticulum in nondividing cells of tobacco leaves,” Plant Cell21(12), 3937–3949 (2009). [CrossRef] [PubMed]
  66. E. Martín-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells, “Design strategies for optimizing holographic optical tweezers set-ups,” J. Opt. A, Pure Appl. Opt.9(8), S267–S277 (2007). [CrossRef]
  67. E. Pleguezuelos, A. Carnicer, J. Andilla, E. Martín-Badosa, and M. Montes-Usategui, “HoloTrap: interactive hologram design for multiple dynamic optical trapping,” Comput. Phys. Commun.176(11-12), 701–709 (2007). [CrossRef]
  68. E. Goytia, L. Fernández-Calvino, B. Martínez-García, D. López-Abella, and J. J. López-Moya, “Production of plum pox virus HC-Pro functionally active for aphid transmission in a transient-expression system,” J. Gen. Virol.87(11), 3413–3423 (2006). [CrossRef] [PubMed]
  69. O. Voinnet, S. Rivas, P. Mestre, and D. Baulcombe, “An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus,” Plant J.33(5), 949–956 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (11099 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited