OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 7 — Jul. 1, 2014
  • pp: 2009–2022

Investigation of temporal vascular effects induced by focused ultrasound treatment with speckle-variance optical coherence tomography

Meng-Tsan Tsai, Feng-Yu Chang, Cheng-Kuang Lee, Cihun-Siyong Alex Gong, Yu-Xiang Lin, Jiann-Der Lee, Chih-Hsun Yang, and Hao-Li Liu  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 7, pp. 2009-2022 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (7673 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Focused ultrasound (FUS) can be used to locally and temporally enhance vascular permeability, improving the efficiency of drug delivery from the blood vessels into the surrounding tissue. However, it is difficult to evaluate in real time the effect induced by FUS and to noninvasively observe the permeability enhancement. In this study, speckle-variance optical coherence tomography (SVOCT) was implemented for the investigation of temporal effects on vessels induced by FUS treatment. With OCT scanning, the dynamic change in vessels during FUS exposure can be observed and studied. Moreover, the vascular effects induced by FUS treatment with and without the presence of microbubbles were investigated and quantitatively compared. Additionally, 2D and 3D speckle-variance images were used for quantitative observation of blood leakage from vessels due to the permeability enhancement caused by FUS, which could be an indicator that can be used to determine the influence of FUS power exposure. In conclusion, SVOCT can be a useful tool for monitoring FUS treatment in real time, facilitating the dynamic observation of temporal effects and helping to determine the optimal FUS power.

© 2014 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(290.1350) Scattering : Backscattering
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
Optical Coherence Tomography

Original Manuscript: April 21, 2014
Revised Manuscript: May 28, 2014
Manuscript Accepted: May 28, 2014
Published: May 30, 2014

Meng-Tsan Tsai, Feng-Yu Chang, Cheng-Kuang Lee, Cihun-Siyong Alex Gong, Yu-Xiang Lin, Jiann-Der Lee, Chih-Hsun Yang, and Hao-Li Liu, "Investigation of temporal vascular effects induced by focused ultrasound treatment with speckle-variance optical coherence tomography," Biomed. Opt. Express 5, 2009-2022 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. B. Cines, E. S. Pollak, C. A. Buck, J. Loscalzo, G. A. Zimmerman, R. P. McEver, J. S. Pober, T. M. Wick, B. A. Konkle, B. S. Schwartz, E. S. Barnathan, K. R. McCrae, B. A. Hug, A. M. Schmidt, and D. M. Stern, “Endothelial cells in physiology and in the pathophysiology of vascular disorders,” Blood91(10), 3527–3561 (1998). [PubMed]
  2. Y. Taniyama, K. Tachibana, K. Hiraoka, T. Namba, K. Yamasaki, N. Hashiya, M. Aoki, T. Ogihara, K. Yasufumi, and R. Morishita, “Local delivery of plasmid DNA into rat carotid artery using ultrasound,” Circulation105(10), 1233–1239 (2002). [CrossRef] [PubMed]
  3. P. E. Huber, M. J. Mann, L. G. Melo, A. Ehsan, D. Kong, L. Zhang, M. Rezvani, P. Peschke, F. Jolesz, V. J. Dzau, and K. Hynynen, “Focused ultrasound (HIFU) induces localized enhancement of reporter gene expression in rabbit carotid artery,” Gene Ther.10(18), 1600–1607 (2003). [CrossRef] [PubMed]
  4. K. Tachibana and S. Tachibana, “Albumin Microbubble Echo-Contrast Material as an Enhancer for Ultrasound Accelerated Thrombolysis,” Circulation92(5), 1148–1150 (1995). [CrossRef] [PubMed]
  5. K. Hynynen, N. McDannold, N. Vykhodtseva, and F. A. Jolesz, “Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits,” Radiology220(3), 640–646 (2001). [CrossRef] [PubMed]
  6. N. McDannold, N. Vykhodtseva, S. Raymond, F. A. Jolesz, and K. Hynynen, “MRI-guided targeted blood-brain barrier disruption with focused ultrasound: Histological findings in rabbits,” Ultrasound Med. Biol.31(11), 1527–1537 (2005). [CrossRef] [PubMed]
  7. H. L. Liu, M. Y. Hua, H. W. Yang, C. Y. Huang, P. C. Chu, J. S. Wu, I. C. Tseng, J. J. Wang, T. C. Yen, P. Y. Chen, and K. C. Wei, “Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain,” Proc. Natl. Acad. Sci. U.S.A.107(34), 15205–15210 (2010). [CrossRef] [PubMed]
  8. H. L. Liu, M. Y. Hua, P. Y. Chen, P. C. Chu, C. H. Pan, H. W. Yang, C. Y. Huang, J. J. Wang, T. C. Yen, and K. C. Wei, “Blood-Brain Barrier Disruption with Focused Ultrasound Enhances Delivery of Chemotherapeutic Drugs for Glioblastoma Treatment,” Radiology255(2), 415–425 (2010). [CrossRef] [PubMed]
  9. C. Y. Lin, Y. L. Huang, J. R. Li, F. H. Chang, and W. L. Lin, “Effects of focused ultrasound and microbubbles on the vascular permeability of nanoparticles delivered into mouse tumors,” Ultrasound Med. Biol.36(9), 1460–1469 (2010). [CrossRef] [PubMed]
  10. W. Wiedemair, Ž. Tuković, H. Jasak, D. Poulikakos, and V. Kurtcuoglu, “On ultrasound-induced microbubble oscillation in a capillary blood vessel and its implications for the blood-brain barrier,” Phys. Med. Biol.57(4), 1019–1045 (2012). [CrossRef] [PubMed]
  11. C. X. Deng, F. J. Qu, V. P. Nikolski, Y. Zhou, and I. R. Efimov, “Fluorescence imaging for real-time monitoring of high-intensity focused ultrasound cardiac ablation,” Ann. Biomed. Eng.33(10), 1352–1359 (2005). [CrossRef] [PubMed]
  12. M. T. Tsai, C. K. Lee, K. M. Lin, Y. X. Lin, T. H. Lin, T. C. Chang, J. D. Lee, and H. L. Liu, “Quantitative observation of focused-ultrasound-induced vascular leakage and deformation via fluorescein angiography and optical coherence tomography,” J. Biomed. Opt.18(10), 101307 (2013). [CrossRef] [PubMed]
  13. M. Kinoshita, N. McDannold, F. A. Jolesz, and K. Hynynen, “Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption,” Proc. Natl. Acad. Sci. U.S.A.103(31), 11719–11723 (2006). [CrossRef] [PubMed]
  14. L. H. Treat, N. McDannold, N. Vykhodtseva, Y. Z. Zhang, K. Tam, and K. Hynynen, “Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound,” Int. J. Cancer121(4), 901–907 (2007). [CrossRef] [PubMed]
  15. A.-H. Liao, H.-L. Liu, C.-H. Su, M.-Y. Hua, H.-W. Yang, Y.-T. Weng, P.-H. Hsu, S.-M. Huang, S.-Y. Wu, H. E. Wang, T. C. Yen, and P. C. Li, “Paramagnetic perfluorocarbon-filled albumin-(Gd-DTPA) microbubbles for the induction of focused-ultrasound-induced blood-brain barrier opening and concurrent MR and ultrasound imaging,” Phys. Med. Biol.57(9), 2787–2802 (2012). [CrossRef] [PubMed]
  16. P. H. Hsu, K. C. Wei, C. Y. Huang, C. J. Wen, T. C. Yen, C. L. Liu, Y. T. Lin, J. C. Chen, C. R. Shen, and H. L. Liu, “Noninvasive and Targeted Gene Delivery into the Brain Using Microbubble-Facilitated Focused Ultrasound,” PLoS ONE8(2), e57682 (2013). [CrossRef] [PubMed]
  17. L. Chen, D. Bouley, E. Yuh, H. D’Arceuil, and K. Butts, “Study of focused ultrasound tissue damage using MRI and histology,” J. Magn. Reson. Imaging10(2), 146–153 (1999). [CrossRef] [PubMed]
  18. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  19. D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics1(12), 709–716 (2007). [CrossRef]
  20. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed Spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008). [CrossRef] [PubMed]
  21. B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express2(6), 1539–1552 (2011). [CrossRef] [PubMed]
  22. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett.24(17), 1221–1223 (1999). [CrossRef] [PubMed]
  23. A. M. Rollins and J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett.24(21), 1484–1486 (1999). [CrossRef] [PubMed]
  24. L. An, P. Li, T. T. Shen, and R. K. Wang, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second,” Biomed. Opt. Express2(10), 2770–2783 (2011). [CrossRef] [PubMed]
  25. M. T. Tsai and M. C. Chan, “Simultaneous 0.8, 1.0, and 1.3 μm multispectral and common-path broadband source for optical coherence tomography,” Opt. Lett.39(4), 865–868 (2014). [CrossRef] [PubMed]
  26. J. F. Xi, A. Q. Zhang, Z. Y. Liu, W. X. Liang, L. Y. Lin, S. Yu, and X. Li, “Diffractive catheter for ultrahigh-resolution spectral-domain volumetric OCT imaging,” Opt. Lett.39(7), 2016–2019 (2014). [CrossRef] [PubMed]
  27. K. Murari, J. Mavadia, J. F. Xi, and X. D. Li, “Self-starting, self-regulating Fourier domain mode locked fiber laser for OCT imaging,” Biomed. Opt. Express2(7), 2005–2011 (2011). [CrossRef] [PubMed]
  28. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett.38(5), 673–675 (2013). [CrossRef] [PubMed]
  29. C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express5(1), 293–311 (2014). [CrossRef] [PubMed]
  30. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003). [CrossRef] [PubMed]
  31. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003). [CrossRef] [PubMed]
  32. Z. H. Ding, Y. H. Zhao, H. W. Ren, J. S. Nelson, and Z. P. Chen, “Real-time phase-resolved optical coherence tomography and optical Doppler tomography,” Opt. Express10(5), 236–245 (2002). [CrossRef] [PubMed]
  33. G. J. Liu, L. Chou, W. C. Jia, W. J. Qi, B. Choi, and Z. P. Chen, “Intensity-based modified Doppler variance algorithm: application to phase instable and phase stable optical coherence tomography systems,” Opt. Express19(12), 11429–11440 (2011). [CrossRef] [PubMed]
  34. Y. Yasuno, Y. J. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-microm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express15(10), 6121–6139 (2007). [CrossRef] [PubMed]
  35. Y. Hong, S. Makita, M. Yamanari, M. Miura, S. Kim, T. Yatagai, and Y. Yasuno, “Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography,” Opt. Express15(12), 7538–7550 (2007). [CrossRef] [PubMed]
  36. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett.33(13), 1530–1532 (2008). [CrossRef] [PubMed]
  37. C. K. Lee, H. Y. Tseng, C. Y. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, H. Y. E. Chou, M. T. Tsai, J. Y. Wang, Y. W. Kiang, C. P. Chiang, and C. C. Yang, “Characterizing the localized surface plasmon resonance behaviors of Au nanorings and tracking their diffusion in bio-tissue with optical coherence tomography,” Biomed. Opt. Express1(4), 1060–1073 (2010). [CrossRef] [PubMed]
  38. D. W. Cadotte, A. Mariampillai, A. Cadotte, K. K. C. Lee, T. R. Kiehl, B. C. Wilson, M. G. Fehlings, and V. X. D. Yang, “Speckle variance optical coherence tomography of the rodent spinal cord: in vivo feasibility,” Biomed. Opt. Express3(5), 911–919 (2012). [CrossRef] [PubMed]
  39. L. Conroy, R. S. DaCosta, and I. A. Vitkin, “Quantifying tissue microvasculature with speckle variance optical coherence tomography,” Opt. Lett.37(15), 3180–3182 (2012). [CrossRef] [PubMed]
  40. H. C. Hendargo, R. Estrada, S. J. Chiu, C. Tomasi, S. Farsiu, and J. A. Izatt, “Automated non-rigid registration and mosaicing for robust imaging of distinct retinal capillary beds using speckle variance optical coherence tomography,” Biomed. Opt. Express4(6), 803–821 (2013). [CrossRef] [PubMed]
  41. L. An and R. K. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express16(15), 11438–11452 (2008). [CrossRef] [PubMed]
  42. S. Yousefi, J. Qin, and R. K. Wang, “Super-resolution spectral estimation of optical micro-angiography for quantifying blood flow within microcirculatory tissue beds in vivo,” Biomed. Opt. Express4(7), 1214–1228 (2013). [CrossRef] [PubMed]
  43. J. Enfield, E. Jonathan, and M. Leahy, “In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT),” Biomed. Opt. Express2(5), 1184–1193 (2011). [CrossRef] [PubMed]
  44. E. Jonathan, J. Enfield, and M. J. Leahy, “Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images,” J. Biophotonics4(9), 583–587 (2011). [PubMed]
  45. S. Sakai, M. Yamanari, Y. Lim, N. Nakagawa, and Y. Yasuno, “In vivo evaluation of human skin anisotropy by polarization-sensitive optical coherence tomography,” Biomed. Opt. Express2(9), 2623–2631 (2011). [CrossRef] [PubMed]
  46. B. Baumann, S. O. Baumann, T. Konegger, M. Pircher, E. Götzinger, F. Schlanitz, C. Schütze, H. Sattmann, M. Litschauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization,” Biomed. Opt. Express3(7), 1670–1683 (2012). [CrossRef] [PubMed]
  47. A. Alex, B. Povazay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt.15(2), 026025 (2010). [CrossRef] [PubMed]
  48. C. P. Fleming, J. Eckert, E. F. Halpern, J. A. Gardecki, and G. J. Tearney, “Depth resolved detection of lipid using spectroscopic optical coherence tomography,” Biomed. Opt. Express4(8), 1269–1284 (2013). [CrossRef] [PubMed]
  49. F. Prati, E. Regar, G. S. Mintz, E. Arbustini, C. Di Mario, I. K. Jang, T. Akasaka, M. Costa, G. Guagliumi, E. Grube, Y. Ozaki, F. Pinto, P. W. J. Serruys, E. O. R. Document, and Expert’s OCT Review Document, “Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis,” Eur. Heart J.31(4), 401–415 (2010). [CrossRef] [PubMed]
  50. N. A. Patel, X. D. Li, D. L. Stamper, J. G. Fujimoto, and M. E. Brezinski, “Guidance of aortic ablation using optical coherence tomography,” Int. J. Cardiovasc. Imaging19(2), 171–178 (2003). [CrossRef] [PubMed]
  51. M. T. Tsai, C. H. Yang, S. C. Shen, Y. J. Lee, F. Y. Chang, and C. S. Feng, “Monitoring of wound healing process of human skin after fractional laser treatments with optical coherence tomography,” Biomed. Opt. Express4(11), 2362–2375 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (9640 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited