OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 7 — Jul. 1, 2014
  • pp: 2023–2036

A 5-mm piezo-scanning fiber device for high speed ultrafast laser microsurgery

Onur Ferhanoglu, Murat Yildirim, Kaushik Subramanian, and Adela Ben-Yakar  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 7, pp. 2023-2036 (2014)
http://dx.doi.org/10.1364/BOE.5.002023


View Full Text Article

Enhanced HTML    Acrobat PDF (2530 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Towards developing precise microsurgery tools for the clinic, we previously developed image-guided miniaturized devices using low repetition rate amplified ultrafast lasers for surgery. To improve the speed of tissue removal while reducing device diameter, here we present a new 5-mm diameter device that delivers high-repetition rate laser pulses for high speed ultrafast laser microsurgery. The device consists of an air-core photonic bandgap fiber (PBF) for the delivery of high energy pulses, a piezoelectric tube actuator for fiber scanning, and two aspheric lenses for focusing the light. Its inline optical architecture provides easy alignment and substantial size reduction to 5 mm diameter as compared to our previous MEMS-scanning devices while realizing improved intensity squared (two-photon) lateral and axial resolutions of 1.16 μm and 11.46 μm, respectively. Our study also sheds light on the maximum pulse energies that can be delivered through the air-core PBF and identifies cladding damage at the input facet of the fiber as the limiting factor. We have achieved a maximum energy delivery larger than 700 nJ at 92% coupling efficiency. An in depth analysis reveals how this value is greatly affected by possible slight misalignments of the beam during coupling and the measured small beam pointing fluctuations. In the absence of these imperfections, self-phase modulation becomes the limiting factor for the maximum energy delivery, setting the theoretical upper bound to near 2 μJ for a 1-m long, 7-μm, air-core PBF. Finally, the use of a 300 kHz repetition rate fiber laser enabled rapid ablation of 150 µm x 150 µm area within only 50 ms. Such ablation speeds can now allow the surgeons to translate the surgery device as fast as ~4 mm/s to continuously remove a thin layer of a 150 µm wide tissue. Thanks to a high optical transmission efficiency of the in-line optical architecture of the device and improved resolution, we could successfully perform ablation of scarred cheek pouch tissue, drilling through a thin slice. With further development, this device can serve as a precise and high speed ultrafast laser scalpel in the clinic.

© 2014 Optical Society of America

OCIS Codes
(140.7090) Lasers and laser optics : Ultrafast lasers
(170.1020) Medical optics and biotechnology : Ablation of tissue
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Optical Therapies and Photomodificaton

History
Original Manuscript: February 18, 2014
Revised Manuscript: May 23, 2014
Manuscript Accepted: May 26, 2014
Published: June 2, 2014

Citation
Onur Ferhanoglu, Murat Yildirim, Kaushik Subramanian, and Adela Ben-Yakar, "A 5-mm piezo-scanning fiber device for high speed ultrafast laser microsurgery," Biomed. Opt. Express 5, 2023-2036 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-7-2023


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103(2), 577–644 (2003). [CrossRef] [PubMed]
  2. M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature432(7019), 822 (2004). [CrossRef] [PubMed]
  3. G. M. Kezirian and K. G. Stonecipher, “Comparison of the IntraLase femtosecond laser and mechanical keratomes for laser in situ keratomileusis,” J. Cataract Refract. Surg.30(4), 804–811 (2004). [CrossRef] [PubMed]
  4. S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics2(10), 557–572 (2009). [CrossRef] [PubMed]
  5. D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond Laser-Assisted Cataract Surgery with Integrated Optical Coherence Tomography,” Sci. Transl. Med.2(58), 58ra85 (2010). [CrossRef] [PubMed]
  6. C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron.20(2), 1–14 (2014). [CrossRef]
  7. C. L. Hoy, N. J. Durr, P. Chen, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Miniaturized probe for femtosecond laser microsurgery and two-photon imaging,” Opt. Express16(13), 9996–10005 (2008). [CrossRef] [PubMed]
  8. C. L. Hoy, O. Ferhanoğlu, M. Yildirim, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Optical design and imaging performance testing of a 9.6-mm diameter femtosecond laser microsurgery probe,” Opt. Express19(11), 10536–10552 (2011). [CrossRef] [PubMed]
  9. C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics7(11), 861–867 (2013). [CrossRef]
  10. M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics7(11), 868–874 (2013). [CrossRef]
  11. M. Yildirim, O. Ferhanoglu, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Parameters affecting ultrafast laser microsurgery of subepithelial voids for scar treatment in vocal folds,” J. Biomed. Opt.18(11), 118001 (2013). [CrossRef] [PubMed]
  12. C. L. Hoy, W. N. Everett, M. Yildirim, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Towards endoscopic ultrafast laser microsurgery of vocal folds,” J. Biomed. Opt.17(3), 038002 (2012). [CrossRef] [PubMed]
  13. Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett.37(15), 3111–3113 (2012). [CrossRef] [PubMed]
  14. X. Peng, M. Mielke, and T. Booth, “High average power, high energy 1.55 μm ultra-short pulse laser beam delivery using large mode area hollow core photonic band-gap fiber,” Opt. Express19(2), 923–932 (2011). [CrossRef] [PubMed]
  15. C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics3(5-6), 385–407 (2010). [CrossRef] [PubMed]
  16. J. Xi, Y. Chen, Y. Zhang, K. Murari, M.-J. Li, and X. Li, “Integrated multimodal endomicroscopy platform for simultaneous en face optical coherence and two-photon fluorescence imaging,” Opt. Lett.37(3), 362–364 (2012). [CrossRef] [PubMed]
  17. Y. Zhang, M. L. Akins, K. Murari, J. Xi, M.-J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. U.S.A.109(32), 12878–12883 (2012). [CrossRef] [PubMed]
  18. C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express16(8), 5556–5564 (2008). [CrossRef] [PubMed]
  19. S. D. Senturia, Microsystem design (Kluwer academic publishers Boston, 2001).
  20. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Jon Wiley & Sons Ltd., 2006).
  21. M. C. Teich and B. Saleh, Fundamentals of photonics (Wiley Interscience, 1991).
  22. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996). [CrossRef] [PubMed]
  23. D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci.150(1), 101–106 (1999). [CrossRef]
  24. R. House, J. Bettis, and A. Guenther, “Surface roughness and laser damage threshold,” IEEE J. Quantum Electron.13(5), 361–363 (1977). [CrossRef]
  25. P. Kean, K. Smith, and W. Sibbett, “Spectral and temporal investigation of self-phase modulation and stimulated Raman scattering in a single-mode optical fibre,” IEE Proc., Optoelectron.134(3), 163–170 (1987).
  26. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003). [CrossRef] [PubMed]
  27. E. J. Seibel and Q. Y. Smithwick, “Unique features of optical scanning, single fiber endoscopy,” Lasers Surg. Med.30(3), 177–183 (2002). [CrossRef] [PubMed]
  28. C. L. Hoy, N. J. Durr, and A. Ben-Yakar, “Fast-updating and nonrepeating Lissajous image reconstruction method for capturing increased dynamic information,” Appl. Opt.50(16), 2376–2382 (2011). [CrossRef] [PubMed]
  29. L. Zhigilei and B. Garrison, “Mechanisms of laser ablation from molecular dynamics simulations: dependence on the initial temperature and pulse duration,” Appl. Phys., A69(S1), 75–80 (1999). [CrossRef]
  30. M. Frentzen, W. Götz, M. Ivanenko, S. Afilal, M. Werner, and P. Hering, “Osteotomy with 80-micros CO2 laser pulses-histological results,” Lasers Med. Sci.18(2), 119–124 (2003). [CrossRef] [PubMed]
  31. T. Chanthasopeephan, J. P. Desai, and A. C. Lau, “Measuring forces in liver cutting: New equipment and experimental results,” Ann. Biomed. Eng.31(11), 1372–1382 (2003). [CrossRef] [PubMed]
  32. S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. Miller, “Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery,” PLoS ONE5(9), e13053 (2010). [CrossRef] [PubMed]
  33. M. L. Kaiser, M. Rubinstein, D. E. Vokes, J. M. Ridgway, S. Guo, M. Gu, R. L. Crumley, W. B. Armstrong, Z. Chen, and B. J. Wong, “Laryngeal epithelial thickness: a comparison between optical coherence tomography and histology,” Clin. Otolaryngol.34(5), 460–466 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited