OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 7 — Jul. 1, 2014
  • pp: 2037–2053

Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink

L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J.-P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H.-C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, A. A. Subash, S. Andersson-Engels, P. Di Ninni, F. Martelli, and G. Zaccanti  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 7, pp. 2037-2053 (2014)
http://dx.doi.org/10.1364/BOE.5.002037


View Full Text Article

Enhanced HTML    Acrobat PDF (1030 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A multi-center study has been set up to accurately characterize the optical properties of diffusive liquid phantoms based on Intralipid and India ink at near-infrared (NIR) wavelengths. Nine research laboratories from six countries adopting different measurement techniques, instrumental set-ups, and data analysis methods determined at their best the optical properties and relative uncertainties of diffusive dilutions prepared with common samples of the two compounds. By exploiting a suitable statistical model, comprehensive reference values at three NIR wavelengths for the intrinsic absorption coefficient of India ink and the intrinsic reduced scattering coefficient of Intralipid-20% were determined with an uncertainty of about 2% or better, depending on the wavelength considered, and 1%, respectively. Even if in this study we focused on particular batches of India ink and Intralipid, the reference values determined here represent a solid and useful starting point for preparing diffusive liquid phantoms with accurately defined optical properties. Furthermore, due to the ready availability, low cost, long-term stability and batch-to-batch reproducibility of these compounds, they provide a unique fundamental tool for the calibration and performance assessment of diffuse optical spectroscopy instrumentation intended to be used in laboratory or clinical environment. Finally, the collaborative work presented here demonstrates that the accuracy level attained in this work for optical properties of diffusive phantoms is reliable.

© 2014 Optical Society of America

OCIS Codes
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.5280) Medical optics and biotechnology : Photon migration
(170.7050) Medical optics and biotechnology : Turbid media

ToC Category:
Calibration, Validation and Phantom Studies

History
Original Manuscript: March 14, 2014
Revised Manuscript: May 23, 2014
Manuscript Accepted: May 25, 2014
Published: June 4, 2014

Citation
L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J.-P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H.-C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, A. A. Subash, S. Andersson-Engels, P. Di Ninni, F. Martelli, and G. Zaccanti, "Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink," Biomed. Opt. Express 5, 2037-2053 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-7-2037


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010). [CrossRef]
  2. F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and other Diffusive Media: Theory, Solutions and Software (SPIE Press, Washington, USA, 2010). [CrossRef]
  3. A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Mller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, E. Tinet, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt.44, 2104–2114 (2005). [CrossRef] [PubMed]
  4. H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” in “Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue V,” vol. 8583 of Proc. SPIE, R. J. Nordstrom, ed. (2013), p. 85830L. [CrossRef]
  5. A. E. Cerussi, R. Warren, B. Hill, D. Roblyer, A. Leproux, A. F. Durkin, T. O’Sullivan, S. Keene, H. Haghany, T. Quang, W. M. Mantulin, and B. J. Tromberg, “Tissue phantoms in multicenter clinical trials for diffuse optical technologies,” Biomed. Opt. Express3, 966–971 (2012). [CrossRef] [PubMed]
  6. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11, 041102 (2006). [CrossRef] [PubMed]
  7. H. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt.30, 4507–4514 (1991). [CrossRef] [PubMed]
  8. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12, 510–519 (1992). [CrossRef] [PubMed]
  9. P. Di Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol.56, N21–N28 (2011). [CrossRef]
  10. P. Di Ninni, F. Martelli, and G. Zaccanti, “The use of India ink in tissue-simulating phantoms,” Opt. Express18, 26854–26865 (2010). [CrossRef]
  11. P. Di Ninni, Y. Bérubé-Lauzière, L. Mercatelli, E. Sani, and F. Martelli, “Fat emulsions as diffusive reference standards for tissue simulating phantoms?” Appl. Opt.51, 7176–7182 (2012). [CrossRef] [PubMed]
  12. L. Spinelli, A. Pifferi, A. Torricelli, R. Cubeddu, P. Di Ninni, F. Martelli, G. Zaccanti, F. Foschum, A. Kienle, M. Mazurenka, H. Wabnitz, M. Kacprzak, N. Zolek, D. Milej, and A. Liebert, “Towards the definition of accurately calibrated liquid phantoms for photon migration at NIR wavelengths: a multi-laboratory study,” in “Biomedical Optics (BIOMED)/ Digital Holography and Three-Dimensional Imaging (DH) on CD-ROM,” (The Optical Society, Washington, DC, 2010). BTuD47.
  13. R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express16, 5907–5925 (2008). [CrossRef] [PubMed]
  14. A. Ishimaru and Y. Kuga, “Attenuation constant of a coherent field in a dense distribution of particles,” J. Opt. Soc. Am.72, 1317–1320 (1982). [CrossRef]
  15. G. Zaccanti, S. Del Bianco, and F. Martelli, “Measurements of optical properties of high density media,” Appl. Opt.42, 4023–4030 (2003). [CrossRef] [PubMed]
  16. P. Di Ninni, F. Martelli, and G. Zaccanti, “Effect of dependent scattering on the optical properties of Intralipid tissue phantoms,” Biomed. Opt. Express2, 2265–2278 (2011). [CrossRef] [PubMed]
  17. L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. Time-resolved method,” Opt. Express15, 6589–6604 (2007). [CrossRef] [PubMed]
  18. J.-P. Bouchard, I. Veilleux, R. Jedidi, I. Noiseux, M. Fortin, and O. Mermut, “Reference optical phantoms for diffuse optical spectroscopy. Part 1 - Error analysis of a time resolved transmittance characterization method,” Opt. Express18, 11495–11507 (2010). [CrossRef] [PubMed]
  19. A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt.42, 5785–5792 (2003). [CrossRef] [PubMed]
  20. S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Opt.32, 559–568 (1993). [CrossRef] [PubMed]
  21. F. Martelli and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. CW method,” Opt. Express15, 486–500 (2007). [CrossRef] [PubMed]
  22. F. Foschum and A. Kienle, “Broadband absorption spectroscopy of turbid media using a dual step steady-state method,” J. Biomed. Opt.17, 037009 (2012). [CrossRef] [PubMed]
  23. D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt.36, 4587–4599 (1997). [CrossRef] [PubMed]
  24. A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Krolicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt.16, 046011 (2011). [CrossRef] [PubMed]
  25. A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt.8, 512–516 (2003). [CrossRef] [PubMed]
  26. J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt.32, 399–410 (1993). [CrossRef] [PubMed]
  27. S. A. Prahl, “Inverse adding-doubling,” http://omlc.ogi.edu/software/iad/ (2011). See in particular the IAD manual where single sphere measurements are described.
  28. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes - The Art of Scientific Computing, 3rd ed. (Cambridge University Press, 2007), chap. 15 - Modeling of data.
  29. S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol.37, 1531–1560 (1992). [CrossRef] [PubMed]
  30. L. Spinelli, F. Martelli, A. Torricelli, A. Pifferi, and G. Zaccanti, “Nonlinear fitting procedure for accurate time-resolved measurements in diffusive media,” in “Diffuse Optical Imaging II,” vol. 7369 of Proc. SPIE, R. Cubeddu and A. H. Hielscher, eds. (2009), p. 73691C. [CrossRef]
  31. F. Foschum, M. Jäger, and A. Kienle, “Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media,” Rev. Sci. Instrum.82, 103104 (2011). [CrossRef] [PubMed]
  32. T. Svensson, E. Alerstam, D. Khoptyar, J. Johansson, S. Folestad, and S. Andersson-Engels, “Near infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm,” Rev. Sci. Instrum.80, 063105 (2009). [CrossRef]
  33. D. Khoptyar, A. A. Subash, S. Johansson, M. Saleem, S. Sparen, J. Johansson, and S. Andersson-Engels, “Broadband photon time-of-flight spectroscopy of pharmaceuticals and highly scattering plastics in the VIS and close NIR spectral ranges,” Opt. Express21, 20941–20953 (2013). [CrossRef] [PubMed]
  34. E. Alerstam, S. Andersson-Engels, and T. Svensson, “White monte carlo for time-resolved photon migration,” J. Biomed. Opt.13, 041304 (2008). [CrossRef] [PubMed]
  35. C. Elster and B. Toman, “Analysis of key comparisons: estimating laboratories biases by a fixed effects model using Bayesian model averaging,” Metrologia47, 113–119 (2010). [CrossRef]
  36. P. I. Rowe, R. Künnemeyer, A. McGlone, S. Talele, P. Martinsen, and R. Olivera, “Thermal stability of Intralipid optical phantoms,” Appl. Spectrosc.67, 993–996 (2013). [CrossRef] [PubMed]
  37. L. Mercatelli, E. Sani, A. Giannini, P. Di Ninni, F. Martelli, and G. Zaccanti, “Carbon nanohorn-based nanofluids: characterization of the spectral scattering albedo,” Nanoscale Research Letters7, 96–105 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited