OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 7 — Jul. 1, 2014
  • pp: 2054–2065

Temperature-sensitive gating of hCx26: high-resolution Raman spectroscopy sheds light on conformational changes

Ann-Kathrin Kniggendorf, Merve Meinhardt-Wollweber, Xiaogang Yuan, Bernhard Roth, Astrid Seifert, Niels Fertig, and Carsten Zeilinger  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 7, pp. 2054-2065 (2014)
http://dx.doi.org/10.1364/BOE.5.002054


View Full Text Article

Enhanced HTML    Acrobat PDF (3766 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The temperature-sensitive gating of human Connexin 26 (hCx26) was analyzed with confocal Raman microscopy. High-resolution Raman spectra covering the spectral range between 400 and 1500 rel. cm−1 with a spectral resolution of 1 cm−1 were fully annotated, revealing notable differences between the spectrum recorded from solubilized hCx26 in Ca2+-buffered POPC at 10°C and any other set of protein conditions (temperature, Ca2+ presence, POPC presence). Spectral components originating from specific amino acids show that the TM1/EL1 parahelix and probably the TM4 trans-membrane helix and the plug domain are involved in the gating process responsible for fully closing the hemichannel.

© 2014 Optical Society of America

OCIS Codes
(170.1420) Medical optics and biotechnology : Biology
(180.5655) Microscopy : Raman microscopy

ToC Category:
Spectroscopic Diagnostics

History
Original Manuscript: February 28, 2014
Revised Manuscript: May 5, 2014
Manuscript Accepted: May 5, 2014
Published: June 6, 2014

Citation
Ann-Kathrin Kniggendorf, Merve Meinhardt-Wollweber, Xiaogang Yuan, Bernhard Roth, Astrid Seifert, Niels Fertig, and Carsten Zeilinger, "Temperature-sensitive gating of hCx26: high-resolution Raman spectroscopy sheds light on conformational changes," Biomed. Opt. Express 5, 2054-2065 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-7-2054


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Peracchia, “Chemical gating of gap junction channels; roles of calcium, pH and calmodulin,” Biochim. Biophys. Acta1662(1-2), 61–80 (2004). [CrossRef] [PubMed]
  2. F. F. Bukauskas and V. K. Verselis, “Gap junction channel gating,” Biochim. Biophys. Acta1662(1-2), 42–60 (2004). [CrossRef] [PubMed]
  3. T. A. Bargiello, Q. Tang, S. Oh, and T. Kwon, “Voltage-dependent conformational changes in connexin channels,” Biochim. Biophys. Acta1818(8), 1807–1822 (2012). [CrossRef] [PubMed]
  4. M. Steffens, F. Göpel, A. Ngezahayo, C. Zeilinger, A. Ernst, and H. A. Kolb, “Regulation of connexons composed of human connexin26 (hCx26) by temperature,” Biochim. Biophys. Acta1778(5), 1206–1212 (2008). [CrossRef] [PubMed]
  5. G. M. Hand, D. J. Müller, B. J. Nicholson, A. Engel, and G. E. Sosinsky, “Isolation and characterization of gap junctions from tissue culture cells,” J. Mol. Biol.315(4), 587–600 (2002). [CrossRef] [PubMed]
  6. S. Maeda, S. Nakagawa, M. Suga, E. Yamashita, A. Oshima, Y. Fujiyoshi, and T. Tsukihara, “Structure of the connexin 26 gap junction channel at 3.5 A resolution,” Nature458(7238), 597–602 (2009). [CrossRef] [PubMed]
  7. C. Ambrosi, D. Boassa, J. Pranskevich, A. Smock, A. Oshima, J. Xu, B. J. Nicholson, and G. E. Sosinsky, “Analysis of four connexin26 mutant gap junctions and hemichannels reveals variations in hexamer stability,” Biophys. J.98(9), 1809–1819 (2010). [CrossRef] [PubMed]
  8. S. A. Oladepo, K. Xiong, Z. Hong, and S. A. Asher, “Elucidating Peptide and Protein Structure and Dynamics: UV Resonance Raman Spectroscopy,” J. Phys. Chem. Lett.2(4), 334–344 (2011). [CrossRef] [PubMed]
  9. I. H. McColl, E. W. Blanch, A. C. Gill, A. G. Rhie, M. A. Ritchie, L. Hecht, K. Nielsen, and L. D. Barron, “A New Perspective on β-Sheet Structures Using Vibrational Raman Optical Activity: From Poly(L-lysine) to the Prion Protein,” J. Am. Chem. Soc.125(33), 10019–10026 (2003). [CrossRef] [PubMed]
  10. C. Zeilinger, M. Steffens, and H. A. Kolb, “Length of C-terminus of rCx46 influences oligomerization and hemichannel properties,” Biochim. Biophys. Acta1720(1-2), 35–43 (2005). [CrossRef] [PubMed]
  11. A. Kniggendorf, T. Gaul, and M. Meinhardt-Wollweber, “Hierarchical Cluster Analysis (HCA) of Microorganisms: An Assessment of Algorithms for Resonance Raman Spectra,” Appl. Spectrosc.65(2), 165–173 (2011). [CrossRef]
  12. A. Rygula, K. Majzner, K. M. Marzec, A. Kaczor, M. Pilarczyk, and M. Baranska, “Raman spectroscopy of proteins: a review,” J. Raman Spectrosc.44(8), 1061–1076 (2013). [CrossRef]
  13. D. Němeček and G. J. Thomas, Jr., “Raman Spectroscopy of Viruses and Viral Proteins,” in Frontiers of Molecular Spectroscopy, J. Laane, ed. (Elsevier, 2009).
  14. F. S. Parker, Biochemistry, (Plenum Press, New York, 1983).
  15. M. C. Chen and R. C. Lord, “Laser-Excited Raman Spectroscopy of Biomolecules. VI. Some Polypeptides as Conformational Models,” J. Am. Chem. Soc.96(15), 4750–4752 (1974). [CrossRef] [PubMed]
  16. E. Podstawka, Y. Ozaki, and L. M. Proniewicz, “Part I: Surface-Enhanced Raman Spectroscopy Investigation of Amino Acids and Their Homodipeptides Adsorbed on Colloidal Silver,” Appl. Spectrosc.58(5), 570–580 (2004). [CrossRef] [PubMed]
  17. A. L. Jenkins, R. A. Larsen, and T. B. Williams, “Characterization of amino acids using Raman spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc.61(7), 1585–1594 (2005). [CrossRef] [PubMed]
  18. J. Jehlička, A. Oren, and H. G. M. Edwards, “Raman spectra of osmotic solutes of halophiles,” J. Raman Spectrosc.43(8), 1134–1140 (2012). [CrossRef]
  19. L. B. Faria, F. M. Almeida, O. Pilla, F. Rossi, J. M. Sasaki, F. E. A. Melo, J. Mendes Filho, and P. T. C. Freire, “Raman spectra of L-histidine hydrochloride monohydrate crystal,” J. Raman Spectrosc.35(3), 242–248 (2004). [CrossRef]
  20. S. Kecel, A. E. Ozel, S. Akyuz, S. Celik, and G. Agaeva, “Conformational analysis and vibrational spectroscopic investigation of L-proline-tyrosine (L-Pro-Tyr) dipeptide,” J. Mol. Struct.993(1-3), 349–356 (2011). [CrossRef]
  21. N. K. Budhavaram and J. R. Barone, “Quantifying amino acid and protein substitution using Raman spectroscopy,” J. Raman Spectrosc.42(3), 355–362 (2011). [CrossRef]
  22. J. Bandekar, “Amide modes and protein conformation,” Biochim. Biophys. Acta1120(2), 123–143 (1992). [CrossRef] [PubMed]
  23. H. S. Shafaat, B. S. Leigh, M. J. Tauber, and J. E. Kim, “Spectroscopic Comparison of Photogenerated Tryptophan Radicals in Azurin: Effects of Local Environment and Structure,” J. Am. Chem. Soc.132(26), 9030–9039 (2010). [CrossRef] [PubMed]
  24. G. P. Sousa, P. T. C. Freire, J. Mendes Filho, F. E. A. Melo, and C. L. Lima, “Low-Temperature Raman Spectra of L-Histidine Crystals,” Braz. J. Phys.43(3), 137–144 (2013). [CrossRef]
  25. N.-T. Yu, B. H. Jo, and D. C. O’Shea, “Laser Raman Scattering of Cobramine B, a Basic Protein from Cobra Venom,” Arch. Biochem. Biophys.156(1), 71–76 (1973). [CrossRef] [PubMed]
  26. C. Hunte, “Specific protein-lipid interactions in membrane proteins,” Biochem. Soc. Trans.33(5), 938–942 (2005). [CrossRef] [PubMed]
  27. A. G. Lee, “Lipid-protein interactions,” Biochem. Soc. Trans.39(3), 761–766 (2011). [PubMed]
  28. H. A. Sánchez, G. Mese, M. Srinivas, T. W. White, and V. K. Verselis, “Differentially altered Ca2+ regulation and Ca2+ permeability in Cx26 hemichannels formed by the A40V and G45E mutations that cause keratitis ichthyosis deafness syndrome,” J. Gen. Physiol.136(1), 47–62 (2010). [CrossRef] [PubMed]
  29. T. Kwon, B. Roux, S. Jo, J. B. Klauda, A. L. Harris, and T. A. Bargiello, “Molecular dynamics simulations of the Cx26 hemichannel: insights into voltage-dependent loop-gating,” Biophys. J.102(6), 1341–1351 (2012). [CrossRef] [PubMed]
  30. A. Ianoul, M. N. Boyden, and S. A. Asher, “Dependence of the Peptide Amide III Vibration on the Φ Dihedral Angle,” J. Am. Chem. Soc.123(30), 7433–7434 (2001). [CrossRef] [PubMed]
  31. F. Zonta, G. Polles, G. Zanotti, and F. Mammano, “Permeation pathway of homomeric connexin 26 and connexin 30 channels investigated by molecular dynamics,” J. Biomol. Struct. Dyn.29(5), 985–998 (2012). [CrossRef] [PubMed]
  32. F. Zonta, G. Polles, M. F. Sanasi, M. Bortolozzi, and F. Mammano, “The 3.5 ångström X-ray structure of the human connexin26 gap junction channel is unlikely that of a fully open channel,” Cell Commun. Signal.11(1), 15 (2013), http://www.biosignaling.com/content/pdf/1478-811X-11-15.pdf . [CrossRef] [PubMed]
  33. D. L. Beahm and J. E. Hall, “Hemichannel and junctional properties of connexin 50,” Biophys. J.82(4), 2016–2031 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited