OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 7 — Jul. 1, 2014
  • pp: 2066–2081

Variations in optical coherence tomography resolution and uniformity: a multi-system performance comparison

Anthony Fouad, T. Joshua Pfefer, Chao-Wei Chen, Wei Gong, Anant Agrawal, Peter H. Tomlins, Peter D. Woolliams, Rebekah A. Drezek, and Yu Chen  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 7, pp. 2066-2081 (2014)
http://dx.doi.org/10.1364/BOE.5.002066


View Full Text Article

Enhanced HTML    Acrobat PDF (3581 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Point spread function (PSF) phantoms based on unstructured distributions of sub-resolution particles in a transparent matrix have been demonstrated as a useful tool for evaluating resolution and its spatial variation across image volumes in optical coherence tomography (OCT) systems. Measurements based on PSF phantoms have the potential to become a standard test method for consistent, objective and quantitative inter-comparison of OCT system performance. Towards this end, we have evaluated three PSF phantoms and investigated their ability to compare the performance of four OCT systems. The phantoms are based on 260-nm-diameter gold nanoshells, 400-nm-diameter iron oxide particles and 1.5-micron-diameter silica particles. The OCT systems included spectral-domain and swept source systems in free-beam geometries as well as a time-domain system in both free-beam and fiberoptic probe geometries. Results indicated that iron oxide particles and gold nanoshells were most effective for measuring spatial variations in the magnitude and shape of PSFs across the image volume. The intensity of individual particles was also used to evaluate spatial variations in signal intensity uniformity. Significant system-to-system differences in resolution and signal intensity and their spatial variation were readily quantified. The phantoms proved useful for identification and characterization of irregularities such as astigmatism. Our multi-system results provide evidence of the practical utility of PSF-phantom-based test methods for quantitative inter-comparison of OCT system resolution and signal uniformity.

© 2014 Optical Society of America

OCIS Codes
(110.3000) Imaging systems : Image quality assessment
(110.4850) Imaging systems : Optical transfer functions
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(350.4800) Other areas of optics : Optical standards and testing

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: March 10, 2014
Revised Manuscript: May 30, 2014
Manuscript Accepted: May 30, 2014
Published: June 9, 2014

Citation
Anthony Fouad, T. Joshua Pfefer, Chao-Wei Chen, Wei Gong, Anant Agrawal, Peter H. Tomlins, Peter D. Woolliams, Rebekah A. Drezek, and Yu Chen, "Variations in optical coherence tomography resolution and uniformity: a multi-system performance comparison," Biomed. Opt. Express 5, 2066-2081 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-7-2066


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. H. Tomlins, P. Woolliams, M. Tedaldi, A. Beaumont, and C. Hart, “Measurement of the three-dimensional point-spread function in an optical coherence tomography imaging system,” Proc. SPIE6847, 68472Q (2008). [CrossRef]
  2. A. Agrawal, T. J. Pfefer, N. Gilani, and R. Drezek, “Three-dimensional characterization of optical coherence tomography point spread functions with a nanoparticle-embedded phantom,” Opt. Lett.35(13), 2269–2271 (2010). [CrossRef] [PubMed]
  3. G. Lamouche, B. F. Kennedy, K. M. Kennedy, C.-E. Bisaillon, A. Curatolo, G. Campbell, V. Pazos, and D. D. Sampson, “Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography,” Biomed. Opt. Express3(6), 1381–1398 (2012). [CrossRef] [PubMed]
  4. A. Curatolo, B. F. Kennedy, and D. D. Sampson, “Structured three-dimensional optical phantom for optical coherence tomography,” Opt. Express19(20), 19480–19485 (2011). [CrossRef] [PubMed]
  5. T. S. Rowe and R. J. Zawadzki, “New developments in eye models with retina tissue phantoms for ophthalmic optical coherence tomography,” Proc. SPIE8229, 822913 (2012). [CrossRef]
  6. S. Tahara, H. G. Bezerra, M. Baibars, H. Kyono, W. Wang, S. Pokras, E. Mehanna, C. L. Petersen, and M. A. Costa, “In vitro validation of new fourier-domain optical coherence tomography,” EuroIntervention6(7), 875–882 (2011). [CrossRef] [PubMed]
  7. A. Agrawal, C.-W. Chen, J. Baxi, Y. Chen, and T. J. Pfefer, “Multilayer thin-film phantoms for axial contrast transfer function measurement in optical coherence tomography,” Biomed. Opt. Express4(7), 1166–1175 (2013). [CrossRef] [PubMed]
  8. P. H. Tomlins, R. A. Ferguson, C. Hart, and P. D. Woolliams, “Point-spread function phantoms for optical coherence tomography,” (NPL Report OP 2, Teddington, Middlesex, UK, 2009).
  9. T. J. Pfefer and A. Agrawal, “A review of consensus test methods for established medical imaging modalities and their implications for optical coherence tomography,” Proc. SPIE8215, 82150D (2012). [CrossRef]
  10. E. A. Berns, R. E. Hendrick, and G. R. Cutter, “Performance comparison of full-field digital mammography to screen-film mammography in clinical practice,” Med. Phys.29(5), 830–834 (2002). [CrossRef] [PubMed]
  11. C.-C. Chen, Y.-L. Wan, Y.-Y. Wai, and H.-L. Liu, “Quality assurance of clinical MRI scanners using ACR MRI phantom: Preliminary results,” J. Digit. Imaging17(4), 279–284 (2004). [CrossRef] [PubMed]
  12. D. A. Jaffray and J. H. Siewerdsen, “Cone-beam computed tomography with a flat-panel imager: Initial performance characterization,” Med. Phys.27(6), 1311–1323 (2000). [CrossRef] [PubMed]
  13. A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: A review of clinical development from bench to bedside,” J. Biomed. Opt.12(5), 051403 (2007). [CrossRef] [PubMed]
  14. International Electrotechnical Commission, “Ultrasonics – pulse-echo scanners – part 1: Techniques for calibrating spatial measurement systems and measurement of system point-spread function response,” STD-568116 (Swedish Standards Institute, Geneva, Switzerland, 2006).
  15. G. J. Brakenhoff, H. T. M. van der Voort, E. A. van Spronsen, and N. Nanninga, “Three-dimensional imaging by confocal scanning fluorescence microscopy,” Ann. N. Y. Acad. Sci.483(1 Recent Advanc), 405–415 (1986). [CrossRef] [PubMed]
  16. A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, and B. J. Tromberg, “Influence of optical properties on two-photon fluorescence imaging in turbid samples,” Appl. Opt.39(7), 1194–1201 (2000). [CrossRef] [PubMed]
  17. S. Hell, “Increasing the resolution of far-field fluorescence light microscopy by point-spread-function engineering,” in Topics in Fluorescence Spectroscopy; volume 5: Nonlinear and Two-Photon-Induced Fluorescence, J. Lakowicz, ed. (Plenum Press, New York, 1997).
  18. A. Agrawal, M. Connors, A. Beylin, C.-P. Liang, D. Barton, Y. Chen, R. A. Drezek, and T. J. Pfefer, “Characterizing the point spread function of retinal OCT devices with a model eye-based phantom,” Biomed. Opt. Express3(5), 1116–1126 (2012). [CrossRef] [PubMed]
  19. P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt.49(11), 2014–2021 (2010). [CrossRef] [PubMed]
  20. P. D. Woolliams and P. H. Tomlins, “Estimating the resolution of a commercial optical coherence tomography system with limited spatial sampling,” Meas. Sci. Technol.22(6), 065502 (2011). [CrossRef]
  21. E. F. Schubert, “Refractive index and extinction coefficient of materials” (2004), retrieved 11/1/2013, http://homepages.rpi.edu/~schubert/Educational-resources/Materials-Refractive-index-and-extinction-coefficient.pdf .
  22. P. Patnaik, Handbook of Inorganic Chemicals (The McGraw-Hill Companies, Inc., 2002).
  23. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am.55(10), 1205–1209 (1965). [CrossRef]
  24. Q. Li, M. L. Onozato, P. M. Andrews, C.-W. Chen, A. Paek, R. Naphas, S. Yuan, J. Jiang, A. Cable, and Y. Chen, “Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (oct),” Opt. Express17(18), 16000–16016 (2009). [CrossRef] [PubMed]
  25. D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: An adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Vis. Sci.49(5), 2061–2070 (2008). [CrossRef] [PubMed]
  26. A. Agrawal, S. Huang, A. Wei Haw Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt.11(4), 041121 (2006). [CrossRef] [PubMed]
  27. S. S. Rogers, T. A. Waigh, X. Zhao, and J. R. Lu, “Precise particle tracking against a complicated background: Polynomial fitting with Gaussian weight,” Phys. Biol.4(3), 220–227 (2007). [CrossRef] [PubMed]
  28. S. Prahl, “Mie scattering calculator (web site)” (2012), retrieved 10/16/2013, http://omlc.ogi.edu/calc/mie_calc.html .
  29. J. Pfefer, A. Fouad, C.-W. Chen, W. Gong, P. Tomlins, P. Woolliams, R. Drezek, A. Agrawal, and Y. Chen, “Multi-system comparison of optical coherence tomography performance with point spread function phantoms,” Proc. SPIE8573, 85730C (2013). [CrossRef]
  30. B. Cense, N. Nassif, T. Chen, M. Pierce, S.-H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express12(11), 2435–2447 (2004). [CrossRef] [PubMed]
  31. S. W. Hell, S. Lindek, C. Cremer, and E. H. K. Stelzer, “Measurement of the 4pi‐confocal point spread function proves 75 nm axial resolution,” Appl. Phys. Lett.64(11), 1335–1337 (1994). [CrossRef]
  32. A. C. Akcay, J. P. Rolland, and J. M. Eichenholz, “Spectral shaping to improve the point spread function in optical coherence tomography,” Opt. Lett.28(20), 1921–1923 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (901 KB)     
» Media 2: MOV (326 KB)     
» Media 3: MOV (324 KB)     
» Media 4: MOV (326 KB)     
» Media 5: MOV (330 KB)     
» Media 6: MOV (1053 KB)     
» Media 7: MOV (1032 KB)     
» Media 8: MOV (1047 KB)     
» Media 9: MOV (1057 KB)     
» Media 10: MOV (154 KB)     
» Media 11: MOV (178 KB)     
» Media 12: MOV (184 KB)     
» Media 13: MOV (170 KB)     
» Media 14: MOV (79 KB)     
» Media 15: MOV (82 KB)     
» Media 16: MOV (119 KB)     
» Media 17: MOV (117 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited