OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 7 — Jul. 1, 2014
  • pp: 2091–2112

Probability method for Cerenkov luminescence tomography based on conformance error minimization

Xintao Ding, Kun Wang, Biao Jie, Yonglong Luo, Zhenhua Hu, and Jie Tian  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 7, pp. 2091-2112 (2014)
http://dx.doi.org/10.1364/BOE.5.002091


View Full Text Article

Enhanced HTML    Acrobat PDF (4756 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Cerenkov luminescence tomography (CLT) was developed to reconstruct a three-dimensional (3D) distribution of radioactive probes inside a living animal. Reconstruction methods are generally performed within a unique framework by searching for the optimum solution. However, the ill-posed aspect of the inverse problem usually results in the reconstruction being non-robust. In addition, the reconstructed result may not match reality since the difference between the highest and lowest uptakes of the resulting radiotracers may be considerably large, therefore the biological significance is lost. In this paper, based on the minimization of a conformance error, a probability method is proposed that consists of qualitative and quantitative modules. The proposed method first pinpoints the organ that contains the light source. Next, we developed a 0-1 linear optimization subject to a space constraint to model the CLT inverse problem, which was transformed into a forward problem by employing a region growing method to solve the optimization. After running through all of the elements used to grow the sources, a source sequence was obtained. Finally, the probability of each discrete node being the light source inside the organ was reconstructed. One numerical study and two in vivo experiments were conducted to verify the performance of the proposed algorithm, and comparisons were carried out using the hp-finite element method (hp-FEM). The results suggested that our proposed probability method was more robust and reasonable than hp-FEM.

© 2014 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(110.6960) Imaging systems : Tomography
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence

ToC Category:
Image Reconstruction and Inverse Problems

History
Original Manuscript: April 9, 2014
Revised Manuscript: May 30, 2014
Manuscript Accepted: June 4, 2014
Published: June 9, 2014

Citation
Xintao Ding, Kun Wang, Biao Jie, Yonglong Luo, Zhenhua Hu, and Jie Tian, "Probability method for Cerenkov luminescence tomography based on conformance error minimization," Biomed. Opt. Express 5, 2091-2112 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-7-2091


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Pysz, S. S. Gambhir, and J. K. Willmann, “Molecular imaging: current status and emerging strategies,” Clin. Radiol.65(7), 500–516 (2010). [CrossRef] [PubMed]
  2. D. A. Mankoff, “A definition of molecular imaging,” J. Nucl. Med.48(6), 18N–21N (2007). [PubMed]
  3. T. F. Massoud and S. S. Gambhir, “Molecular imaging in living subjects: seeing fundamental biological processes in a new light,” Genes Dev.17(5), 545–580 (2003). [CrossRef] [PubMed]
  4. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol.23(3), 313–320 (2005). [CrossRef] [PubMed]
  5. J. S. Cho, R. Taschereau, S. Olma, K. Liu, Y. C. Chen, C. K. Shen, R. M. van Dam, and A. F. Chatziioannou, “Cerenkov radiation imaging as a method for quantitative measurements of beta particles in a microfluidic chip,” Phys. Med. Biol.54(22), 6757–6771 (2009). [CrossRef] [PubMed]
  6. R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, and M. D. Silva, “Optical imaging of Cerenkov light generation from positron-emitting radiotracers,” Phys. Med. Biol.54(16), N355–N365 (2009). [CrossRef] [PubMed]
  7. A. Ruggiero, J. P. Holland, J. S. Lewis, and J. Grimm, “Cerenkov luminescence imaging of medical isotopes,” J. Nucl. Med.51(7), 1123–1130 (2010). [CrossRef] [PubMed]
  8. B. J. Beattie, D. L. J. Thorek, C. R. Schmidtlein, K. S. Pentlow, J. L. Humm, and A. H. Hielscher, “Quantitative modeling of Cerenkov light production efficiency from medical radionuclides,” PLoS ONE7(2), e31402 (2012). [CrossRef] [PubMed]
  9. H. Liu, G. Ren, Z. Miao, X. Zhang, X. Tang, P. Han, S. S. Gambhir, and Z. Cheng, “Molecular optical imaging with radioactive probes,” PLoS ONE5(3), e9470 (2010). [CrossRef] [PubMed]
  10. F. Boschi, L. Calderan, D. D’Ambrosio, M. Marengo, A. Fenzi, R. Calandrino, A. Sbarbati, and A. E. Spinelli, “In vivo 18F-FDG tumour uptake measurements in small animals using Cerenkov radiation,” Eur. J. Nucl. Med. Mol. Imaging38(1), 120–127 (2011). [CrossRef] [PubMed]
  11. R. Robertson, M. S. Germanos, M. G. Manfredi, P. G. Smith, and M. D. Silva, “Multimodal imaging with (18)F-FDG PET and Cerenkov luminescence imaging after MLN4924 treatment in a human lymphoma xenograft model,” J. Nucl. Med.52(11), 1764–1769 (2011). [CrossRef] [PubMed]
  12. Y. Xu, E. Chang, H. Liu, H. Jiang, S. S. Gambhir, and Z. Cheng, “Proof-of-concept study of monitoring cancer drug therapy with Cerenkov luminescence imaging,” J. Nucl. Med.53(2), 312–317 (2012). [CrossRef] [PubMed]
  13. J. C. Park, G. Il An, S. I. Park, J. Oh, H. J. Kim, Y. Su Ha, E. K. Wang, K. Min Kim, J. Y. Kim, J. Lee, M. J. Welch, and J. Yoo, “Luminescence imaging using radionuclides: a potential application in molecular imaging,” Nucl. Med. Biol.38(3), 321–329 (2011). [CrossRef] [PubMed]
  14. J. P. Holland, G. Normand, A. Ruggiero, J. S. Lewis, and J. Grimm, “Intraoperative imaging of positron emission tomographic radiotracers using Cerenkov luminescence emissions,” Mol. Imaging10(3), 177–186 (2011).
  15. G. S. Mitchell, “In vivo Cerenkov luminescence imaging: a new tool for molecular imaging,” Phil. Trans. R. Soc. A369, 4605–4619 (2011).
  16. A. E. Spinelli, D. D’Ambrosio, L. Calderan, M. Marengo, A. Sbarbati, and F. Boschi, “Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers,” Phys. Med. Biol.55(2), 483–495 (2010). [CrossRef] [PubMed]
  17. D. Lj. Thorek, R. Robertson, W. A. Bacchus, J. Hahn, J. Rothberg, B. J. Beattie, and J. Grimm, “Cerenkov imaging - a new modality for molecular imaging,” Am J Nucl Med Mol Imaging2(2), 163–173 (2012). [PubMed]
  18. C. Li, G. S. Mitchell, and S. R. Cherry, “Cerenkov luminescence tomography for small-animal imaging,” Opt. Lett.35(7), 1109–1111 (2010). [CrossRef] [PubMed]
  19. A. E. Spinelli, C. Kuo, B. W. Rice, R. Calandrino, P. Marzola, A. Sbarbati, and F. Boschi, “Multispectral Cerenkov luminescence tomography for small animal optical imaging,” Opt. Express19(13), 12605–12618 (2011), http://www.opticsinfobase.org/oe/fulltext.cfm?uri=oe-19-13-12605&id=218880 . [CrossRef] [PubMed]
  20. Z. Hu, J. Liang, W. Yang, W. Fan, C. Li, X. Ma, X. Chen, X. Ma, X. Li, X. Qu, J. Wang, F. Cao, and J. Tian, “Experimental Cerenkov luminescence tomography of the mouse model with SPECT imaging validation,” Opt. Express18(24), 24441–24450 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-24-24441 . [CrossRef] [PubMed]
  21. Z. Hu, X. Ma, X. Qu, W. Yang, J. Liang, J. Wang, and J. Tian, “Three-dimensional noninvasive monitoring iodine-131 uptake in the thyroid using a modified Cerenkov luminescence tomography approach,” PLoS ONE7(5), e37623 (2012). [CrossRef] [PubMed]
  22. Z. Hu, X. Chen, J. Liang, X. Qu, D. Chen, W. Yang, J. Wang, F. Cao, and J. Tian, “Single photon emission computed tomography-guided Cerenkov luminescence tomography,” J. Appl. Phys.112(2), 024703 (2012). [CrossRef]
  23. Z. Hu, W. Yang, X. Ma, W. Ma, X. Qu, J. Liang, J. Wang, and J. Tian, “Cerenkov luminescence tomography of aminopeptidase N (APN/CD13) expression in mice bearing HT1080 tumors,” Mol. Imaging12(3), 173–181 (2013). [PubMed]
  24. J. Zhong, J. Tian, X. Yang, and C. Qin, “Whole-body Cerenkov luminescence tomography with the finite element SP3 method,” Ann. Biomed. Eng.39(6), 1728–1735 (2011). [CrossRef] [PubMed]
  25. R. Zhang, S. C. Davis, J. L. H. Demers, A. K. Glaser, D. J. Gladstone, T. V. Esipova, S. A. Vinogradov, and B. W. Pogue, “Oxygen tomography by Čerenkov-excited phosphorescence during external beam irradiation,” J. Biomed. Opt.18(5), 050503 (2013). [CrossRef] [PubMed]
  26. J. L. Demers, S. C. Davis, R. Zhang, D. J. Gladstone, and B. W. Pogue, “Čerenkov excited fluorescence tomography using external beam radiation,” Opt. Lett.38(8), 1364–1366 (2013), http://www.opticsinfobase.org/vjbo/fulltext.cfm?uri=ol-38-8-1364&id=252787 . [CrossRef] [PubMed]
  27. F. Kojima and J. S. Knopp, “Inverse problem for electromagnetic propagation in a dielectric medium using Markov chain Monte Carlo method,” Int. J. Innov. Comput., Inf. Control8(3), 2339–2346 (2012).
  28. R. C. Aster, B. Borchers, and C. H. Thurber, Parameter estimation and inverse problems (2nd ed.) (Academic Press, Waltham, 2013).
  29. J. A. Tropp and S. J. Wright, “Computational methods for sparse solution of linear inverse problems,” Proc. IEEE98(6), 948–958 (2010). [CrossRef]
  30. S. Ahn, A. J. Chaudhari, F. Darvas, C. A. Bouman, and R. M. Leahy, “Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography,” Phys. Med. Biol.53(14), 3921–3942 (2008). [CrossRef] [PubMed]
  31. C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt.12(2), 024007 (2007). [CrossRef] [PubMed]
  32. F. Santosa, “A level-set approach for inverse problems involving obstacles,” ESAIM Control Optim. Calc. Var.1, 17–33 (1996). [CrossRef]
  33. A. Aghasi, M. Kilmer, and E. L. Miller, “Parametric level set methods for inverse problems,” SIAM J. Imaging Sci.4(2), 618–650 (2011). [CrossRef]
  34. R. Han, J. Liang, X. Qu, Y. Hou, N. Ren, J. Mao, and J. Tian, “A source reconstruction algorithm based on adaptive hp-FEM for bioluminescence tomography,” Opt. Express17(17), 14481–14494 (2009). [CrossRef] [PubMed]
  35. H. Gao and H. Zhao, “Multilevel bioluminescence tomography based on radiative transfer equation Part 1: l1 regularization,” Opt. Express18(3), 1854–1871 (2010). [CrossRef] [PubMed]
  36. H. Yi, D. Chen, W. Li, S. Zhu, X. Wang, J. Liang, and J. Tian, “Reconstruction algorithms based on l1-norm and l2-norm for two imaging models of fluorescence molecular tomography: a comparative study,” J. Biomed. Opt.18(5), 056013 (2013). [CrossRef] [PubMed]
  37. L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley, New York, 2007).
  38. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys.22(11), 1779–1792 (1995). [CrossRef] [PubMed]
  39. W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. Wang, E. Hoffman, G. McLennan, P. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express13(18), 6756–6771 (2005). [CrossRef] [PubMed]
  40. A. Cong and G. Wang, “A finite-element-based reconstruction method for 3D fluorescence tomography,” Opt. Express13(24), 9847–9857 (2005). [CrossRef] [PubMed]
  41. J. Welch and M. J. C. van Gemert, Optical and Thermal Response of Laser-Irradiated Tissue (Plenum Press, New York, 1995).
  42. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992). [CrossRef] [PubMed]
  43. M. Gurfinkel, T. S. Pan, and E. M. Sevick-Muraca, “Determination of optical properties in semi-infinite turbid media using imaging measurements of frequency-domain photon migration obtained with an intensified charge-coupled device,” J. Biomed. Opt.9(6), 1336–1346 (2004). [CrossRef] [PubMed]
  44. A. El Badia and T. H. Duong, “Some remarks on the problem of source identification from boundary measurements,” Inverse Probl.14(4), 883–891 (1998). [CrossRef]
  45. G. Wang, Y. Li, and M. Jiang, “Uniqueness theorems in bioluminescence tomography,” Med. Phys.31(8), 2289–2299 (2004). [CrossRef] [PubMed]
  46. W. Han, W. Cong, and G. Wang, “Mathematical theory and numerical analysis of bioluminescence tomography,” Inverse Probl.22(5), 1659–1675 (2006). [CrossRef]
  47. F. R. Gantmacher, The theory of matrices (AMS Chelsea, New York, 1960).
  48. K. Matsuura and Y. Okabe, “Selective minimum-norm solution of the biomagnetic inverse problem,” IEEE Trans. Biomed. Eng.42(6), 608–615 (1995).
  49. Y. P. Petrov and V. S. Sizikov, Well-Posed, Ill-Posed, and Intermediate Problems with Applications (Koninklijke Brill NV, Leiden, 2005).
  50. A. N. Tikhonov, V. I. Arsenin, and F. John, Solutions of Ill-Posed Problems (John Wiley and Sons, Washington, DC, 1977).
  51. S. Demko, “Condition numbers of rectangular systems and bounds for generalized inverses,” Linear Algebra Appl.78, 199–206 (1986). [CrossRef]
  52. A. Ben-Israel and T. N. Greville, Generalized Inverses: Theory and Applications (Springer, New York, 2003).
  53. G. Chen, Y. Wei, and Y. Xue, “The generalized condition numbers of bounded linear operators in Banach spaces,” J Aust. Math. Soc.76(2), 281–290 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited