OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 7 — Jul. 1, 2014
  • pp: 2113–2124

Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure

Brendan F. Kennedy, Robert A. McLaughlin, Kelsey M. Kennedy, Lixin Chin, Andrea Curatolo, Alan Tien, Bruce Latham, Christobel M. Saunders, and David D. Sampson  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 7, pp. 2113-2124 (2014)
http://dx.doi.org/10.1364/BOE.5.002113


View Full Text Article

Enhanced HTML    Acrobat PDF (7410 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present optical coherence micro-elastography, an improved form of compression optical coherence elastography. We demonstrate the capacity of this technique to produce en face images, closely corresponding with histology, that reveal micro-scale mechanical contrast in human breast and lymph node tissues. We use phase-sensitive, three-dimensional optical coherence tomography (OCT) to probe the nanometer-to-micrometer-scale axial displacements in tissues induced by compressive loading. Optical coherence micro-elastography incorporates common-path interferometry, weighted averaging of the complex OCT signal and weighted least-squares regression. Using three-dimensional phase unwrapping, we have increased the maximum detectable strain eleven-fold over no unwrapping and the minimum detectable strain is 2.6 με. We demonstrate the potential of mechanical over optical contrast for visualizing micro-scale tissue structures in human breast cancer pathology and lymph node morphology.

© 2014 Optical Society of America

OCIS Codes
(110.1650) Imaging systems : Coherence imaging
(110.4500) Imaging systems : Optical coherence tomography
(100.5088) Image processing : Phase unwrapping

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: April 9, 2014
Revised Manuscript: May 28, 2014
Manuscript Accepted: May 30, 2014
Published: June 9, 2014

Citation
Brendan F. Kennedy, Robert A. McLaughlin, Kelsey M. Kennedy, Lixin Chin, Andrea Curatolo, Alan Tien, Bruce Latham, Christobel M. Saunders, and David D. Sampson, "Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure," Biomed. Opt. Express 5, 2113-2124 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-7-2113


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol.58(11), R37–R61 (2013). [CrossRef] [PubMed]
  2. R. Weissleder, “Scaling down imaging: molecular mapping of cancer in mice,” Nat. Rev. Cancer2(1), 11–18 (2002). [CrossRef] [PubMed]
  3. G. Y. Lee and C. T. Lim, “Biomechanics approaches to studying human diseases,” Trends Biotechnol.25(3), 111–118 (2007). [CrossRef] [PubMed]
  4. D. T. Butcher, T. Alliston, and V. M. Weaver, “A tense situation: forcing tumour progression,” Nat. Rev. Cancer9(2), 108–122 (2009). [CrossRef] [PubMed]
  5. M. Plodinec, M. Loparic, C. A. Monnier, E. C. Obermann, R. Zanetti-Dallenbach, P. Oertle, J. T. Hyotyla, U. Aebi, M. Bentires-Alj, R. Y. H. Lim, and C.-A. Schoenenberger, “The nanomechanical signature of breast cancer,” Nat. Nanotechnol.7(11), 757–765 (2012). [CrossRef] [PubMed]
  6. S. M. Block, D. F. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature338(6215), 514–518 (1989). [CrossRef] [PubMed]
  7. J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging13(2), 111–134 (1991). [CrossRef] [PubMed]
  8. R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science269(5232), 1854–1857 (1995). [CrossRef] [PubMed]
  9. J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng.5(1), 57–78 (2003). [CrossRef] [PubMed]
  10. K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Med. Biol.56(1), R1–R29 (2011). [CrossRef] [PubMed]
  11. W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J.-P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology262(2), 435–449 (2012). [CrossRef] [PubMed]
  12. C. Corpechot, F. Carrat, A. Poujol-Robert, F. Gaouar, D. Wendum, O. Chazouillères, and R. Poupon, “Noninvasive elastography-based assessment of liver fibrosis progression and prognosis in primary biliary cirrhosis,” Hepatology56(1), 198–208 (2012). [CrossRef] [PubMed]
  13. S. L. Jacques and S. J. Kirkpatrick, “Acoustically modulated speckle imaging of biological tissues,” Opt. Lett.23(11), 879–881 (1998). [CrossRef] [PubMed]
  14. J. M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express3(6), 199–211 (1998). [CrossRef] [PubMed]
  15. K. D. Mohan and A. L. Oldenburg, “Elastography of soft materials and tissues by holographic imaging of surface acoustic waves,” Opt. Express20(17), 18887–18897 (2012). [CrossRef] [PubMed]
  16. B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A review of optical coherence elastography: fundamentals, techniques and prospects,” IEEE J. Sel. Top. Quantum Electron.20, 7101217 (2014).
  17. R. Chan, A. Chau, W. Karl, S. Nadkarni, A. Khalil, N. Iftimia, M. Shishkov, G. Tearney, M. Kaazempur-Mofrad, and B. Bouma, “OCT-based arterial elastography: robust estimation exploiting tissue biomechanics,” Opt. Express12(19), 4558–4572 (2004). [CrossRef] [PubMed]
  18. R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett.89(14), 144103 (2006). [CrossRef]
  19. R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett.90(16), 164105 (2007). [CrossRef]
  20. B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express19(7), 6623–6634 (2011). [CrossRef] [PubMed]
  21. C. Sun, B. Standish, and V. X. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt.16(4), 043001 (2011). [CrossRef] [PubMed]
  22. B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. T. Munro, and D. D. Sampson, “Strain estimation in phase-sensitive optical coherence elastography,” Biomed. Opt. Express3(8), 1865–1879 (2012). [CrossRef] [PubMed]
  23. C. Li, G. Guan, X. Cheng, Z. Huang, and R. K. Wang, “Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography,” Opt. Lett.37(4), 722–724 (2012). [CrossRef] [PubMed]
  24. W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt.17(11), 110505 (2012). [CrossRef] [PubMed]
  25. S. Wang, J. Li, R. K. Manapuram, F. M. Menodiado, D. R. Ingram, M. D. Twa, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system,” Opt. Lett.37(24), 5184–5186 (2012). [CrossRef] [PubMed]
  26. A. Nahas, M. Bauer, S. Roux, and A. C. Boccara, “3D static elastography at the micrometer scale using Full Field OCT,” Biomed. Opt. Express4(10), 2138–2149 (2013). [CrossRef] [PubMed]
  27. A. B. Vakhtin, D. J. Kane, W. R. Wood, and K. A. Peterson, “Common-path interferometer for frequency-domain optical coherence tomography,” Appl. Opt.42(34), 6953–6958 (2003). [CrossRef] [PubMed]
  28. K. M. Kennedy, C. Ford, B. F. Kennedy, M. B. Bush, and D. D. Sampson, “Analysis of mechanical contrast in optical coherence elastography,” J. Biomed. Opt.18(12), 121508 (2013). [CrossRef] [PubMed]
  29. B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express17(24), 21762–21772 (2009). [CrossRef] [PubMed]
  30. B. F. Kennedy, A. Curatolo, T. R. Hillman, C. M. Saunders, and D. D. Sampson, “Speckle reduction in optical coherence tomography images using tissue viscoelasticity,” J. Biomed. Opt.16(2), 020506 (2011). [CrossRef] [PubMed]
  31. B. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm,” Opt. Express13(11), 3931–3944 (2005). [CrossRef] [PubMed]
  32. A. Curatolo, B. F. Kennedy, and D. D. Sampson, “Structured three-dimensional optical phantom for optical coherence tomography,” Opt. Express19(20), 19480–19485 (2011). [CrossRef] [PubMed]
  33. G. Lamouche, B. F. Kennedy, K. M. Kennedy, C.-E. Bisaillon, A. Curatolo, G. Campbell, V. Pazos, and D. D. Sampson, “Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography,” Biomed. Opt. Express3(6), 1381–1398 (2012). [CrossRef] [PubMed]
  34. R. A. McLaughlin, L. Scolaro, P. Robbins, S. Hamza, C. Saunders, and D. D. Sampson, “Imaging of human lymph nodes using optical coherence tomography: potential for staging cancer,” Cancer Res.70(7), 2579–2584 (2010). [CrossRef] [PubMed]
  35. A. Szkulmowska, M. Szkulmowski, A. Kowalczyk, and M. Wojtkowski, “Phase-resolved Doppler optical coherence tomography-limitations and improvements,” Opt. Lett.33(13), 1425–1427 (2008). [CrossRef] [PubMed]
  36. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algortihms and Software (Wiley, New York, 1998).
  37. F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res.69(22), 8790–8796 (2009). [CrossRef] [PubMed]
  38. S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, and G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation112(6), 885–892 (2005). [CrossRef] [PubMed]
  39. M. R. Ford, W. J. Dupps, A. M. Rollins, A. S. Roy, and Z. Hu, “Method for optical coherence elastography of the cornea,” J. Biomed. Opt.16(1), 016005 (2011). [CrossRef] [PubMed]
  40. K. M. Kennedy, B. F. Kennedy, R. A. McLaughlin, and D. D. Sampson, “Needle optical coherence elastography for tissue boundary detection,” Opt. Lett.37(12), 2310–2312 (2012). [CrossRef] [PubMed]
  41. K. M. Kennedy, R. A. McLaughlin, B. F. Kennedy, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Needle optical coherence elastography for the measurement of microscale mechanical contrast deep within human breast tissues,” J. Biomed. Opt.18(12), 121510 (2013). [CrossRef] [PubMed]
  42. A. H. Chau, R. C. Chan, M. Shishkov, B. MacNeill, N. Iftimia, G. J. Tearney, R. D. Kamm, B. E. Bouma, and M. R. Kaazempur-Mofrad, “Mechanical analysis of atherosclerotic plaques based on optical coherence tomography,” Ann. Biomed. Eng.32(11), 1494–1503 (2004). [CrossRef] [PubMed]
  43. S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: motion artifact and its compensation,” J. Biomed. Opt.18(12), 121505 (2013). [CrossRef] [PubMed]
  44. K. M. Kennedy, S. Es’haghian, L. Chin, R. A. McLaughlin, D. D. Sampson, and B. F. Kennedy, “Optical palpation: Optical coherence tomography-based tactile imaging using a compliant sensor,” Opt. Lett.39(10), 3014–3017 (2014). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (8812 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited