OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 7 — Jul. 1, 2014
  • pp: 2125–2134

Vibrationally resonant sum-frequency generation microscopy with a solid immersion lens

Eun Seong Lee, Sang-Won Lee, Julie Hsu, and Eric O. Potma  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 7, pp. 2125-2134 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1600 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We use a hemispheric sapphire lens in combination with an off-axis parabolic mirror to demonstrate high-resolution vibrationally resonant sum-frequency generation (VR-SFG) microscopy in the mid-infrared range. With the sapphire lens as an immersed solid medium, the numerical aperture (NA) of the parabolic mirror objective is enhanced by a factor of 1.72, from 0.42 to 0.72, close to the theoretical value of 1.76 ( = nsapphire). The measured lateral resolution is as high as 0.64 μm. We show the practical utility of the sapphire immersion lens by imaging collagen-rich tissues with and without the solid immersion lens.

© 2014 Optical Society of America

OCIS Codes
(110.3080) Imaging systems : Infrared imaging
(170.0180) Medical optics and biotechnology : Microscopy
(190.4223) Nonlinear optics : Nonlinear wave mixing
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:

Original Manuscript: April 9, 2014
Revised Manuscript: May 21, 2014
Manuscript Accepted: May 21, 2014
Published: June 9, 2014

Eun Seong Lee, Sang-Won Lee, Julie Hsu, and Eric O. Potma, "Vibrationally resonant sum-frequency generation microscopy with a solid immersion lens," Biomed. Opt. Express 5, 2125-2134 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. C. Smith, Fundamentals of Fourier Transform Infrared Spectroscopy (CRC Press, Boca Raton, 2011).
  2. F. Garczarek and K. Gerwert, “Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy,” Nature439(7072), 109–112 (2006). [CrossRef] [PubMed]
  3. R. Mendelsohn, H. C. Chen, M. E. Rerek, and D. J. Moore, “Infrared microspectroscopic imaging maps the spatial distribution of exogenous molecules in skin,” J. Biomed. Opt.8(2), 185–190 (2003). [CrossRef] [PubMed]
  4. K. Inoue, N. Bokor, S. Kogure, M. Fujii, and M. Sakai, “Two-point-separation in a sub-micron nonscanning IR super-resolution microscope based on transient fluorescence detected IR spectroscopy,” Opt. Express17(14), 12013–12018 (2009). [CrossRef] [PubMed]
  5. E. S. Lee and J. Y. Lee, “High resolution cellular imaging with nonlinear optical infrared microscopy,” Opt. Express19(2), 1378–1384 (2011). [CrossRef] [PubMed]
  6. V. Raghunathan, Y. Han, O. Korth, N. H. Ge, and E. O. Potma, “Rapid vibrational imaging with sum frequency generation microscopy,” Opt. Lett.36(19), 3891–3893 (2011). [CrossRef] [PubMed]
  7. Y. Han, V. Raghunathan, R. R. Feng, H. Maekawa, C. Y. Chung, Y. Feng, E. O. Potma, and N. H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” J. Phys. Chem. B117(20), 6149–6156 (2013). [CrossRef] [PubMed]
  8. M. Flörsheimer, C. Brillert, and H. Fuchs, “Chemical imaging of interfaces by sum frequency microscopy,” Langmuir15(17), 5437–5439 (1999). [CrossRef]
  9. K. Kuhnke, D. M. P. Hoffmann, X. C. Wu, A. M. Bittner, and K. Kern, “Chemical imaging of interfaces by sum-frequency generation microscopy: application to patterned self-assembled monolayers,” Appl. Phys. Lett.83(18), 3830–3832 (2003). [CrossRef]
  10. K. A. Cimatu and S. Baldelli, “Chemical microscopy of surfaces by sum frequency generation imaging,” J. Phys. Chem. C113(38), 16575–16588 (2009). [CrossRef]
  11. H. C. Hieu, N. A. Tuan, H. Li, Y. Miyauchi, and G. Mizutani, “Sum frequency generation microscopy study of cellulose fibers,” Appl. Spectrosc.65(11), 1254–1259 (2011). [CrossRef] [PubMed]
  12. J. H. Jang, J. Jacob, G. Santos, T. R. Lee, and S. Baldelli, “Image contrast in sum-frequency generation microscopy based on monolayer order and coverage,” J. Phys. Chem. C117(29), 15192–15202 (2013). [CrossRef]
  13. D. S. Grey, “A new series of microscope objectives; Preliminary investigation of catadioptric Schwarzschild systems,” J. Opt. Soc. Am.39(9), 723–728 (1949). [CrossRef] [PubMed]
  14. S. T. Yang, R. L. Hsieh, Y. H. Lee, R. F. W. Pease, and G. Owen, “Effect of central obscuration on image formation in projection lithography,” Proc. SPIE1264, 477–485 (1990). [CrossRef]
  15. N. Olivier, D. DéBarre, P. Mahou, and E. Beaurepaire, “Third-harmonic generation microscopy with Bessel beams: a numerical study,” Opt. Express20(22), 24886–24902 (2012). [CrossRef] [PubMed]
  16. S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett.57(24), 2615–2616 (1990). [CrossRef]
  17. L. P. Ghislain and V. B. Elings, “Near-field scanning solid immersion microscope,” Appl. Phys. Lett.72(22), 2779–2781 (1998). [CrossRef]
  18. Q. Wu, R. D. Grober, D. Gammon, and D. S. Katzer, “Imaging spectroscopy of two-dimensional excitons in a narrow GaAs/AlGaAs quantum well,” Phys. Rev. Lett.83(13), 2652–2655 (1999). [CrossRef]
  19. Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett.75(26), 4064–4066 (1999). [CrossRef]
  20. D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett.77(14), 2109–2111 (2000). [CrossRef]
  21. S. B. Ippolito, B. B. Goldberg, and M. S. Unlu, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett.78(26), 4071–4073 (2001). [CrossRef]
  22. K. Cohn, D. Simanovskii, T. Smith, and D. Palanker, “Transient photoinduced diffractive solid immersion lens for infrared microscopy,” Appl. Phys. Lett.81(19), 3678–3680 (2002). [CrossRef]
  23. B. D. Terris, H. J. Mamin, and D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett.68(2), 141–143 (1996). [CrossRef]
  24. T. D. Milster, “Near-field optical data storage: avenues for improved performance,” Opt. Eng.40(10), 2255–2260 (2001). [CrossRef]
  25. Y. Lu, J. Xie, J. Jhang, H. Ming, and P. Wang, “Increased the storage density of solid immersion lens system by high-pass angular spectrum filter method,” Opt. Commun.203(1-2), 87–92 (2002). [CrossRef]
  26. T. S. Song, H. D. Kwon, Y. J. Yoon, K. S. Jung, N. C. Park, and Y. P. Park, “Aspherical solid immersion lens of integrated optical head for near-field recording,” Jpn. J. Appl. Phys.42(Part 1, No. 2B), 1082–1089 (2003). [CrossRef]
  27. M. K. Hong, A. G. Jeung, N. V. Dokholyan, T. I. Smith, H. A. Schwettman, P. Huie, and S. Erramilli, “Imaging single living cells with a scanning near-field infrared microscope based on a free electron laser,” Nucl. Instrum. Methods Phys. Res. B144(1-4), 246–255 (1998). [CrossRef]
  28. M. Baba, T. Sasaki, M. Yoshita, and H. Akiyama, “Aberrations and allowances for errors in a hemisphere solid immersion lens for submicron-resolution photoluminescence microscopy,” J. Appl. Phys.85(9), 6923–6925 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited