OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 7 — Jul. 1, 2014
  • pp: 2135–2144

Integrated photoacoustic, ultrasound and fluorescence platform for diagnostic medical imaging-proof of concept study with a tissue mimicking phantom

Joseph James, Vadakke Matham Murukeshan, and Lye Sun Woh  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 7, pp. 2135-2144 (2014)
http://dx.doi.org/10.1364/BOE.5.002135


View Full Text Article

Enhanced HTML    Acrobat PDF (1730 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The structural and molecular heterogeneities of biological tissues demand the interrogation of the samples with multiple energy sources and provide visualization capabilities at varying spatial resolution and depth scales for obtaining complementary diagnostic information. A novel multi-modal imaging approach that uses optical and acoustic energies to perform photoacoustic, ultrasound and fluorescence imaging at multiple resolution scales from the tissue surface and depth is proposed in this paper. The system comprises of two distinct forms of hardware level integration so as to have an integrated imaging system under a single instrumentation set-up. The experimental studies show that the system is capable of mapping high resolution fluorescence signatures from the surface, optical absorption and acoustic heterogeneities along the depth (>2cm) of the tissue at multi-scale resolution (<1µm to <0.5mm).

© 2014 Optical Society of America

OCIS Codes
(110.5120) Imaging systems : Photoacoustic imaging
(110.7170) Imaging systems : Ultrasound
(170.0110) Medical optics and biotechnology : Imaging systems
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.3890) Medical optics and biotechnology : Medical optics instrumentation

ToC Category:
Multimodal Imaging

History
Original Manuscript: March 14, 2014
Revised Manuscript: April 29, 2014
Manuscript Accepted: May 7, 2014
Published: June 9, 2014

Citation
Joseph James, Vadakke Matham Murukeshan, and Lye Sun Woh, "Integrated photoacoustic, ultrasound and fluorescence platform for diagnostic medical imaging-proof of concept study with a tissue mimicking phantom," Biomed. Opt. Express 5, 2135-2144 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-7-2135


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Weissleder and M. J. Pittet, “Imaging in the era of molecular oncology,” Nature452(7187), 580–589 (2008). [CrossRef] [PubMed]
  2. V. V. Tuchin, “Tissue optics: Light scattering methods and instruments for medical diagnosis ed 2,” Bellingham SPIE Publications (2007).
  3. S. R. Cherry, “Multimodality in vivo imaging systems: Twice the power or double the trouble?” Annu. Rev. Biomed. Eng.8(1), 35–62 (2006). [CrossRef] [PubMed]
  4. S. R. Cherry, “Multimodality imaging: beyond PET/CT and SPECT/CT,” Semin. Nucl. Med.39(5), 348–353 (2009). [CrossRef] [PubMed]
  5. D. W. Townsend, “Multimodality imaging of structure and function,” Phys. Med. Biol.53(4), R1–R39 (2008). [CrossRef] [PubMed]
  6. R. G. M. Kolkman, P. J. Brands, W. Steenbergen, and T. G. van Leeuwen, “Real-time in vivo photoacoustic and ultrasound imaging,” J. Biomed. Opt.13(5), 050510 (2008). [CrossRef] [PubMed]
  7. J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging24(4), 436–440 (2005). [CrossRef] [PubMed]
  8. G. Rousseau, A. Blouin, and J.-P. Monchalin, “Non-contact photoacoustic tomography and ultrasonography for tissue imaging,” Biomed. Opt. Express3(1), 16–25 (2012). [CrossRef] [PubMed]
  9. L. G. Montilla, R. Olafsson, D. R. Bauer, and R. S. Witte, “Real-time photoacoustic and ultrasound imaging: a simple solution for clinical ultrasound systems with linear arrays,” Phys. Med. Biol.58(1), N1–N12 (2013). [CrossRef] [PubMed]
  10. B.-Y. Hsieha and P.-C. Lia, “Real-time intravascular ultrasound/photoacoustic imaging system with omni-directional light excitation,” Photons Plus Ultrasound: Imaging and Sensing8223, 822319 (2012).
  11. A. Needles, A. Heinmiller, J. Sun, C. Theodoropoulos, D. Bates, D. Hirson, M. Yin, and F. S. Foster, “Development and initial application of a fully integrated photoacoustic micro-ultrasound system,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control60(5), 888–897 (2013). [CrossRef] [PubMed]
  12. U. Alqasemi, H. Li, G. Yuan, P. Kumavor, S. Zanganeh, and Q. Zhu, “Real-time interlaced ultrasound and photoacoustic system for in vivo ovarian tissue imaging,” Photons Plus Ultrasound: Imaging and Sensing8581, 85814S (2013).
  13. T. Harrison, J. C. Ranasinghesagara, H. Lu, K. Mathewson, A. Walsh, and R. J. Zemp, “Combined photoacoustic and ultrasound biomicroscopy,” Opt. Express17(24), 22041–22046 (2009). [CrossRef] [PubMed]
  14. W. Wei, X. Li, Q. Zhou, K. K. Shung, and Z. Chen, “Integrated ultrasound and photoacoustic probe for co-registered intravascular imaging,” J. Biomed. Opt.16(10), 106001 (2011). [CrossRef] [PubMed]
  15. L. Xi, X. Li, L. Yao, S. Grobmyer, and H. Jiang, “Design and evaluation of a hybrid photoacoustic tomography and diffuse optical tomography system for breast cancer detection,” Med. Phys.39(5), 2584–2594 (2012). [CrossRef] [PubMed]
  16. X. Li, L. Xi, R. Jiang, L. Yao, and H. Jiang, “Integrated diffuse optical tomography and photoacoustic tomography: phantom validations,” Biomed. Opt. Express2(8), 2348–2353 (2011). [CrossRef] [PubMed]
  17. D. Razansky and V. Ntziachristos, “Hybrid photoacoustic fluorescence molecular tomography using finite-element-based inversion,” Med. Phys.34(11), 4293–4301 (2007). [CrossRef] [PubMed]
  18. Y. Wang, S. Hu, K. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “In vivo integrated photoacoustic and confocal microscopy of hemoglobin oxygen saturation and oxygen partial pressure,” Opt. Lett.36(7), 1029–1031 (2011). [CrossRef] [PubMed]
  19. Y. Wang, K. Maslov, C. Kim, S. Hu, and L. V. Wang, “Integrated photoacoustic and fluorescence confocal microscopy,” IEEE Trans. Biomed. Eng.57(10), 2576–2578 (2010). [CrossRef] [PubMed]
  20. S. Jiao, Z. Xie, H. F. Zhang, and C. A. Puliafito, “Simultaneous multimodal imaging with integrated photoacoustic microscopy and optical coherence tomography,” Opt. Lett.34(19), 2961–2963 (2009). [CrossRef] [PubMed]
  21. E. Z. Zhang, “Multimodal simultaneous photoacoustic tomography, optical resolution microscopy, and OCT system,” Photons Plus Ultrasound: Imaging and Sensing7564, 75640–75647 (2010).
  22. T. Liu, Q. Wei, J. Wang, S. Jiao, and H. F. Zhang, “Combined photoacoustic microscopy and optical coherence tomography can measure metabolic rate of oxygen,” Biomed. Opt. Express2(5), 1359–1365 (2011). [CrossRef] [PubMed]
  23. C. Lee, S. Han, S. Kim, M. Jeon, M. Y. Jeon, C. Kim, and J. Kim, “Combined photoacoustic and optical coherence tomography using a single near-infrared supercontinuum laser source,” Appl. Opt.52(9), 1824–1828 (2013). [CrossRef] [PubMed]
  24. X. Zhang, H. F. Zhang, and S. Jiao, “Optical coherence photoacoustic microscopy: accomplishing optical coherence tomography and photoacoustic microscopy with a single light source,” J. Biomed. Opt.17(3), 0305021 (2011).
  25. Y. Yang, X. Li, T. Wang, P. D. Kumavor, A. Aguirre, K. K. Shung, Q. Zhou, M. Sanders, M. Brewer, and Q. Zhu, “Integrated optical coherence tomography, ultrasound and photoacoustic imaging for ovarian tissue characterization,” Biomed. Opt. Express2(9), 2551–2561 (2011). [CrossRef] [PubMed]
  26. H. Ke, T. N. Erpelding, L. Jankovic, C. Liu, and L. V. Wang, “Performance characterization of an integrated ultrasound, photoacoustic, and thermoacoustic imaging system,” J. Biomed. Opt.17(5), 056010 (2012). [CrossRef] [PubMed]
  27. D. R. Reinecke, R. A. Kruger, R. B. Lam, and S. P. DelRio, “Co-registered photoacoustic, thermoacoustic, and ultrasound mouse imaging,” Photons Plus Ultrasound: Imaging and Sensing7564, 756420 (2010).
  28. S. Y. Emelianov, S. R. Aglyamov, J. Shah, S. Sethuraman, W. Scott, R. Schmitt, M. Motamedi, A. Karpiouk, and A. A. Oraevsky, “Combined ultrasound, optoacoustic, and elasticity imaging,” Photons Plus Ultrasound: Imaging and Sensing5320, 101–112 (2004).
  29. S. Emelianov, S. Aglyamov, A. Karpiouk, S. Mallidi, S. Park, S. Sethuraman, J. Shah, R. Smalling, J. Rubin, and W. Scott, “1E-5 Synergy and Applications of Combined Ultrasound, Elasticity, and Photoacoustic Imaging,” in Ultrason, pp 405-415 (2006).
  30. I. M. Graf, S. Kim, B. Wang, R. Smalling, and S. Emelianov, “Noninvasive detection of intimal xanthoma using combined ultrasound, strain rate and photoacoustic imaging,” Ultrasonics52(3), 435–441 (2012). [CrossRef] [PubMed]
  31. P. Shao, W. Shi, P. Hajireza, and R. J. Zemp, “Integrated micro-endoscopy system for simultaneous fluorescence and optical-resolution photoacoustic imaging,” J. Biomed. Opt.17(7), 076024 (2012). [CrossRef] [PubMed]
  32. I. N. Papadopoulos, O. Simandoux, S. Farahi, J. P. Huignard, E. Bossy, D. Psaltis, and C. Moser, “Optical-resolution photoacoustic microscopy by use of a multimode fiber,” Appl. Phys. Lett.102(21), 211106 (2013). [CrossRef]
  33. J. Joseph, V. M. Murukeshan, K. Sathiyamoorthy, and S. W. Lye, “Integrated laser photoacoustic, ultrasound and fluorescence imaging (PAUSFI) for diagnostic bio-imaging applications,” Laser Phys. (to be published).
  34. R. Choe, “Diffuse optical tomography and spectroscopy of breast cancer and fetal brain,” http://www.physics.upenn.edu/yodhlab/theses/regine_choe.pdf . [CrossRef]
  35. American national standard for safe use of lasers (ANSI Z136.1–2007), (Laser Institute of America, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited