OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 7 — Jul. 1, 2014
  • pp: 2157–2171

Optimization of camera exposure durations for multi-exposure speckle imaging of the microcirculation

S. M. Shams Kazmi, Satyajit Balial, and Andrew K. Dunn  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 7, pp. 2157-2171 (2014)
http://dx.doi.org/10.1364/BOE.5.002157


View Full Text Article

Enhanced HTML    Acrobat PDF (4023 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Improved Laser Speckle Contrast Imaging (LSCI) blood flow analyses that incorporate inverse models of the underlying laser-tissue interaction have been used to develop more quantitative implementations of speckle flowmetry such as Multi-Exposure Speckle Imaging (MESI). In this paper, we determine the optimal camera exposure durations required for obtaining flow information with comparable accuracy with the prevailing MESI implementation utilized in recent in vivo rodent studies. A looping leave-one-out (LOO) algorithm was used to identify exposure subsets which were analyzed for accuracy against flows obtained from analysis with the original full exposure set over 9 animals comprising n = 314 regional flow measurements. From the 15 original exposures, 6 exposures were found using the LOO process to provide comparable accuracy, defined as being no more than 10% deviant, with the original flow measurements. The optimal subset of exposures provides a basis set of camera durations for speckle flowmetry studies of the microcirculation and confers a two-fold faster acquisition rate and a 28% reduction in processing time without sacrificing accuracy. Additionally, the optimization process can be used to identify further reductions in the exposure subsets for tailoring imaging over less expansive flow distributions to enable even faster imaging.

© 2014 Optical Society of America

OCIS Codes
(110.6150) Imaging systems : Speckle imaging
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology

ToC Category:
Speckle Imaging and Diagnostics

History
Original Manuscript: February 28, 2014
Revised Manuscript: May 19, 2014
Manuscript Accepted: May 30, 2014
Published: June 10, 2014

Citation
S. M. Shams Kazmi, Satyajit Balial, and Andrew K. Dunn, "Optimization of camera exposure durations for multi-exposure speckle imaging of the microcirculation," Biomed. Opt. Express 5, 2157-2171 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-7-2157


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109 (2010). [CrossRef] [PubMed]
  2. G. A. Armitage, K. G. Todd, A. Shuaib, and I. R. Winship, “Laser speckle contrast imaging of collateral blood flow during acute ischemic stroke,” J. Cereb. Blood Flow Metab.30(8), 1432–1436 (2010). [CrossRef] [PubMed]
  3. A. K. Dunn, “Laser Speckle Contrast Imaging of Cerebral Blood Flow,” Ann. Biomed. Eng.40(2), 367–377 (2012). [CrossRef] [PubMed]
  4. H. Karatas, S. E. Erdener, Y. Gursoy-Ozdemir, S. Lule, E. Eren-Koçak, Z. D. Sen, and T. Dalkara, “Spreading Depression Triggers Headache by Activating Neuronal Panx1 Channels,” Science339(6123), 1092–1095 (2013). [CrossRef] [PubMed]
  5. J. Senarathna, A. Rege, N. Li, and N. V. Thakor, “Laser Speckle Contrast Imaging: Theory, Instrumentation and Applications,” Biomed. Eng. IEEE Rev. In 6, 99–110 (2013).
  6. A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express16(3), 1975–1989 (2008). [CrossRef] [PubMed]
  7. A. B. Parthasarathy, S. M. S. Kazmi, and A. K. Dunn, “Quantitative imaging of ischemic stroke through thinned skull in mice with Multi Exposure Speckle Imaging,” Biomed. Opt. Express1(1), 246–259 (2010). [CrossRef] [PubMed]
  8. M. Roustit and J.-L. Cracowski, “Assessment of endothelial and neurovascular function in human skin microcirculation,” Trends Pharmacol. Sci.34(7), 373–384 (2013). [CrossRef] [PubMed]
  9. I. I. Khludeyev, A. S. Tserakh, A. V. Smirnov, S. K. Dick, and V. P. Zorina, “Speckle optical monitoring of blood microcirculation for different types of treatment of the vascular system,” J. Appl. Spectrosc.80(2), 299–304 (2013). [CrossRef]
  10. Y.-C. Huang, T. L. Ringold, J. S. Nelson, and B. Choi, “Noninvasive Blood Flow Imaging for Real-Time Feedback During Laser Therapy of Port Wine Stain Birthmarks,” Lasers Surg. Med.40(3), 167–173 (2008). [CrossRef] [PubMed]
  11. W. Jia, V. Sun, N. Tran, B. Choi, S. W. Liu, M. C. Mihm, T. L. Phung, and J. S. Nelson, “Long-Term Blood Vessel Removal With Combined Laser and Topical Rapamycin Antiangiogenic Therapy: Implications for Effective Port Wine Stain Treatment,” Lasers Surg. Med.42(2), 105–112 (2010). [CrossRef] [PubMed]
  12. J. Ren, P. Li, H. Zhao, D. Chen, J. Zhen, Y. Wang, Y. Wang, and Y. Gu, “Assessment of tissue perfusion changes in port wine stains after vascular targeted photodynamic therapy: a short-term follow-up study,” Lasers Med. Sci.29, 1–8 (2013). [PubMed]
  13. P. Ganapathy, T. Tamminedi, Y. Qin, L. Nanney, N. Cardwell, A. Pollins, K. Sexton, and J. Yadegar, “Dual-imaging system for burn depth diagnosis,” Burns40(1), 67–81 (2014). [CrossRef] [PubMed]
  14. B. Ruaro, A. Sulli, E. Alessandri, C. Pizzorni, G. Ferrari, and M. Cutolo, “Laser speckle contrast analysis: a new method to evaluate peripheral blood perfusion in systemic sclerosis patients,” Ann. Rheum. Dis. annrheumdis–2013–203514 (2014).
  15. L. Wang, G. A. Cull, C. Piper, C. F. Burgoyne, and B. Fortune, “Anterior and posterior optic nerve head blood flow in nonhuman primate experimental glaucoma model measured by laser speckle imaging technique and microsphere method,” Invest. Ophthalmol. Vis. Sci.53(13), 8303–8309 (2012). [CrossRef] [PubMed]
  16. N. Aizawa, Y. Yokoyama, N. Chiba, K. Omodaka, M. Yasuda, T. Otomo, M. Nakamura, N. Fuse, and T. Nakazawa, “Reproducibility of retinal circulation measurements obtained using laser speckle flowgraphy-NAVI in patients with glaucoma,” Clin Ophthalmol5, 1171–1176 (2011). [PubMed]
  17. A. I. Srienc, Z. L. Kurth-Nelson, and E. A. Newman, “Imaging retinal blood flow with laser speckle flowmetry,” Front. Neuroenergetics2, 128 (2010).
  18. N. Hecht, J. Woitzik, J. P. Dreier, and P. Vajkoczy, “Intraoperative monitoring of cerebral blood flow by laser speckle contrast analysis,” Neurosurg. Focus27(4), E11 (2009). [CrossRef] [PubMed]
  19. A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt.15(6), 066030 (2010). [CrossRef] [PubMed]
  20. N. Hecht, J. Woitzik, S. König, P. Horn, and P. Vajkoczy, “Laser speckle imaging allows real-time intraoperative blood flow assessment during neurosurgical procedures,” J. Cereb. Blood Flow Metab.33(7), 1000–1007 (2013). [CrossRef] [PubMed]
  21. S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using Multi-Exposure Speckle Imaging,” J. Cereb. Blood Flow Metab.33(6), 798–808 (2013). [CrossRef] [PubMed]
  22. F. Domoki, D. Zölei, O. Oláh, V. Tóth-Szuki, B. Hopp, F. Bari, and T. Smausz, “Evaluation of laser-speckle contrast image analysis techniques in the cortical microcirculation of piglets,” Microvasc. Res.83(3), 311–317 (2012). [CrossRef] [PubMed]
  23. Y. Atchia, H. Levy, S. Dufour, and O. Levi, “Rapid multiexposure in vivo brain imaging system using vertical cavity surface emitting lasers as a light source,” Appl. Opt.52(7), C64–C71 (2013). [CrossRef] [PubMed]
  24. I. R. Winship, “Improved cerebral blood flow measurement with multiexposure speckle imaging,” J. Cereb. Blood Flow Metab.33(6), 797 (2013). [CrossRef] [PubMed]
  25. J. C. Ramirez-San-Juan, E. Mendez-Aguilar, N. Salazar-Hermenegildo, A. Fuentes-Garcia, R. Ramos-Garcia, and B. Choi, “Effects of speckle/pixel size ratio on temporal and spatial speckle-contrast analysis of dynamic scattering systems: Implications for measurements of blood-flow dynamics,” Biomed. Opt. Express4(10), 1883–1889 (2013). [CrossRef] [PubMed]
  26. A. Nadort, R. G. Woolthuis, T. G. van Leeuwen, and D. J. Faber, “Quantitative laser speckle flowmetry of the in vivo microcirculation using sidestream dark field microscopy,” Biomed. Opt. Express4(11), 2347–2361 (2013). [CrossRef] [PubMed]
  27. S. Yuan, A. Devor, D. A. Boas, and A. K. Dunn, “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Appl. Opt.44(10), 1823–1830 (2005). [CrossRef] [PubMed]
  28. J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt.1(2), 174–179 (1996). [CrossRef] [PubMed]
  29. W. J. Tom, A. Ponticorvo, and A. K. Dunn, “Efficient processing of laser speckle contrast images,” IEEE Trans. Med. Imaging27(12), 1728–1738 (2008). [CrossRef] [PubMed]
  30. R. Bonner and R. Nossal, “Model for laser Doppler measurements of blood flow in tissue,” Appl. Opt.20(12), 2097–2107 (1981). [CrossRef] [PubMed]
  31. C. Ayata, A. K. Dunn, Y. Gursoy-OZdemir, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Laser Speckle Flowmetry for the Study of Cerebrovascular Physiology in Normal and Ischemic Mouse Cortex,” J. Cereb. Blood Flow Metab.24(7), 744–755 (2004). [CrossRef] [PubMed]
  32. A. J. Strong, E. L. Bezzina, P. J. B. Anderson, M. G. Boutelle, S. E. Hopwood, and A. K. Dunn, “Evaluation of laser speckle flowmetry for imaging cortical perfusion in experimental stroke studies: quantitation of perfusion and detection of peri-infarct depolarisations,” J. Cereb. Blood Flow Metab.26(5), 645–653 (2006). [CrossRef] [PubMed]
  33. E. L. Towle, L. M. Richards, S. M. S. Kazmi, D. J. Fox, and A. K. Dunn, “Comparison of indocyanine green angiography and laser speckle contrast imaging for the assessment of vasculature perfusion,” Neurosurgery71(5), 1023–1030 (2012). [CrossRef] [PubMed]
  34. A. Rege, K. Murari, A. Seifert, A. P. Pathak, and N. V. Thakor, “Multiexposure laser speckle contrast imaging of the angiogenic microenvironment,” J. Biomed. Opt.16(5), 056006 (2011). [CrossRef] [PubMed]
  35. A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun.37(5), 326–330 (1981). [CrossRef]
  36. W. I. Rosenblum, “Erythrocyte Velocity and a Velocity Pulse in Minute Blood Vessels on the Surface of the Mouse Brain,” Circ. Res.24(6), 887–892 (1969). [CrossRef] [PubMed]
  37. D. D. Duncan, P. Lemaillet, M. Ibrahim, Q. D. Nguyen, M. Hiller, and J. Ramella-Roman, “Absolute blood velocity measured with a modified fundus camera,” J. Biomed. Opt.15(5), 056014 (2010). [CrossRef] [PubMed]
  38. N. Nishimura, N. L. Rosidi, C. Iadecola, and C. B. Schaffer, “Limitations of collateral flow after occlusion of a single cortical penetrating arteriole,” J. Cereb. Blood Flow Metab.30(12), 1914–1927 (2010). [CrossRef] [PubMed]
  39. A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage27(2), 279–290 (2005). [CrossRef] [PubMed]
  40. T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal Quantification of Cerebral Blood Flow During Functional Activation in Rat Somatosensory Cortex Using Laser-Speckle Flowmetry,” J. Cereb. Blood Flow Metab.24(5), 518–525 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited