OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 7 — Jul. 1, 2014
  • pp: 2184–2195

Exploring diazepam’s effect on hemodynamic responses of mouse brain tissue by optical spectroscopic imaging

David Abookasis, Ariel Shochat, Elimelech Nesher, and Albert Pinhasov  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 7, pp. 2184-2195 (2014)
http://dx.doi.org/10.1364/BOE.5.002184


View Full Text Article

Enhanced HTML    Acrobat PDF (1136 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this study, a simple duel-optical spectroscopic imaging apparatus capable of simultaneously determining relative changes in brain oxy-and deoxy-hemoglobin concentrations was used following administration of the anxiolytic compound diazepam in mice with strong dominant (Dom) and submissive (Sub) behavioral traits. Three month old mice (n = 30) were anesthetized and after 10 min of baseline imaging, diazepam (1.5 mg/kg) was administered and measurements were taken for 80 min. The mouse head was illuminated by white light based LED's and diffused reflected light passing through different channels, consisting of a bandpass filter and a CCD camera, respectively, was collected and analyzed to measure the hemodynamic response. This work’s major findings are threefold: first, Dom and Sub animals showed statistically significant differences in hemodynamic response to diazepam administration. Secondly, diazepam was found to more strongly affect the Sub group. Thirdly, different time-series profiles were observed post-injection, which can serve as a possible marker for the groups’ differentiation. To the best of our knowledge, this is the first report on the effects of an anxiolytic drug on brain hemodynamic responses in mice using diffused light optical imaging.

© 2014 Optical Society of America

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

ToC Category:
Neuroscience and Brain Imaging

History
Original Manuscript: March 10, 2014
Revised Manuscript: April 27, 2014
Manuscript Accepted: May 2, 2014
Published: June 11, 2014

Citation
David Abookasis, Ariel Shochat, Elimelech Nesher, and Albert Pinhasov, "Exploring diazepam’s effect on hemodynamic responses of mouse brain tissue by optical spectroscopic imaging," Biomed. Opt. Express 5, 2184-2195 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-7-2184


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. C. Kessler, P. Berglund, O. Demler, R. Jin, K. R. Merikangas, and E. E. Walters, “Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication,” Arch. Gen. Psychiatry62(6), 593–602 (2005). [CrossRef] [PubMed]
  2. R. C. Kessler, A. M. Ruscio, K. Shear, and H. U. Wittchen, “Epidemiology of anxiety disorders,” Curr. Top. Behav. Neurosci.2, 21–35 (2009). [CrossRef] [PubMed]
  3. V. Krishnan and E. J. Nestler, “The molecular neurobiology of depression,” Nature455(7215), 894–902 (2008). [CrossRef] [PubMed]
  4. M. T. Berlim, M. P. Fleck, and G. Turecki, “Current trends in the assessment and somatic treatment of resistant/refractory major depression: an overview,” Ann. Med.40(2), 149–159 (2008). [CrossRef] [PubMed]
  5. C. J. Harmer, G. M. Goodwin, and P. J. Cowen, “Why do antidepressants take so long to work? A cognitive neuropsychological model of antidepressant drug action,” Br. J. Psychiatry195(2), 102–108 (2009). [CrossRef] [PubMed]
  6. G. R. McClelland and P. Raptopoulos, “EEG and blood level of the potential antidepressant paroxetine after a single oral dose to normal volunteers,” Psychopharmacology (Berl.)83(4), 327–329 (1984). [CrossRef] [PubMed]
  7. R. G. Wise, B. J. Lujan, P. Schweinhardt, G. D. Peskett, R. Rogers, and I. Tracey, “The anxiolytic effects of midazolam during anticipation to pain revealed using fMRI,” Magn. Reson. Imaging25(6), 801–810 (2007). [CrossRef] [PubMed]
  8. R. Rakheja, A. Ciarallo, Y. Z. Alabed, and M. Hickeson, “Intravenous administration of diazepam significantly reduces brown fat activity on 18F-FDG PET/CT,” Am. J. Nucl. Med. Mol. Imaging1(1), 29–35 (2011). [PubMed]
  9. J. Divljaković, M. Milić, T. Timić, and M. M. Savić, “Tolerance liability of diazepam is dependent on the dose used for protracted treatment,” Pharmacol. Rep.64(5), 1116–1125 (2012). [CrossRef] [PubMed]
  10. M. P. Peppers, “Benzodiazepines for alcohol withdrawal in the elderly and in patients with liver disease,” Pharmacotherapy16(1), 49–57 (1996). [PubMed]
  11. K. Rickels, E. Schweizer, N. DeMartinis, L. Mandos, and C. Mercer, “Gepirone and diazepam in generalized anxiety disorder: a placebo-controlled trial,” J. Clin. Psychopharmacol.17(4), 272–277 (1997). [CrossRef] [PubMed]
  12. D. A. Boas, C. Pitris, and N. Ramanujam, Handbook of Biomedical Optics (CRC Press, Boca Raton, 2011).
  13. E. Watanabe, A. Maki, F. Kawaguchi, Y. Yamashita, H. Koizumi, and Y. Mayanagi, “Noninvasive cerebral blood volume measurement during seizures using multichannel near infrared spectroscopic topography,” J. Biomed. Opt.5(3), 287–290 (2000). [CrossRef] [PubMed]
  14. R. P. Kennan, D. Kim, A. Maki, H. Koizumi, and R. T. Constable, “Non-invasive assessment of language lateralization by transcranial near infrared optical topography and functional MRI,” Hum. Brain Mapp.16(3), 183–189 (2002). [CrossRef] [PubMed]
  15. K. Matsuo, T. Kato, M. Fukuda, and N. Kato, “Alteration of hemoglobin oxygenation in the frontal region in elderly depressed patients as measured by near-infrared spectroscopy,” J. Neuropsychiatry Clin. Neurosci.12(4), 465–471 (2000). [CrossRef] [PubMed]
  16. P. M. Arenth, J. H. Ricker, and M. T. Schultheis, “Applications of functional near-infrared spectroscopy (fNIRS) to Neurorehabilitation of cognitive disabilities,” Clin. Neuropsychol.21(1), 38–57 (2007). [CrossRef] [PubMed]
  17. M. Costantini, A. Di Vacri, A. M. Chiarelli, F. Ferri, G. Luca Romani, and A. Merla, “Studying social cognition using near-infrared spectroscopy: the case of social Simon effect,” J. Biomed. Opt.18(2), 025005 (2013). [CrossRef] [PubMed]
  18. G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psychiatry52(7), 679–693 (2002). [CrossRef] [PubMed]
  19. R. D. Frostig, In vivo Optical Imaging of Brain Function, 2nd ed. (CRC Press, Boca Raton, 2009).
  20. G. Gratton, P. M. Corballis, E. Cho, M. Fabiani, and D. C. Hood, “Shades of gray matter: noninvasive optical images of human brain responses during visual stimulation,” Psychophysiology32(5), 505–509 (1995). [CrossRef] [PubMed]
  21. D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W. F. Cheong, and D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cereb. Blood Flow Metab.20(3), 469–477 (2000). [CrossRef] [PubMed]
  22. A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci.20(10), 435–442 (1997). [CrossRef] [PubMed]
  23. M. Izzetoglu, S. C. Bunce, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional brain imaging using near-infrared technology,” IEEE Eng. Med. Biol. Mag.26(4), 38–46 (2007). [CrossRef] [PubMed]
  24. L. V. Wang and H.-i. Wu, Biomedical optics: principles and imaging. (Wiley-Interscience, Hoboken, N.J., 2007).
  25. J. G. Fujimoto and D. L. Farkas, Biomedical Optical Imaging (Oxford University Press, Oxford; New York, 2009).
  26. F. Crespi, M. Donini, A. Bandera, F. Congestri, F. Formenti, V. Sonntag, C. Heidbreder, and L. Rovati, “Near-infrared oxymeter biosensor prototype for non-invasive in vivo analysis of rat brain oxygenation: effects of drugs of abuse,” J. Opt. A, Pure Appl. Opt.8(7), 528 (2006). [CrossRef]
  27. K. Kohmura, K. Iwamoto, B. Aleksic, K. Sasada, N. Kawano, H. Katayama, Y. Noda, A. Noda, T. Iidaka, and N. Ozaki, “Effects of sedative antidepressants on prefrontal cortex activity during verbal fluency task in healthy subjects: a near-infrared spectroscopy study,” Psychopharmacology (Berl.)226(1), 75–81 (2013). [CrossRef] [PubMed]
  28. E. A. Verhagen, E. M. Kooi, P. P. van den Berg, and A. F. Bos, “Maternal antihypertensive drugs may influence cerebral oxygen extraction in preterm infants during the first days after birth,” J. Matern. Fetal Neonatal Med.26(9), 871–876 (2013). [CrossRef] [PubMed]
  29. Y. Feder, E. Nesher, A. Ogran, A. Kreinin, E. Malatynska, G. Yadid, and A. Pinhasov, “Selective breeding for dominant and submissive behavior in Sabra mice,” J. Affect. Disord.126(1-2), 214–222 (2010). [CrossRef] [PubMed]
  30. E. Nesher, M. Gross, S. Lisson, T. Tikhonov, G. Yadid, and A. Pinhasov, “Differential responses to distinct psychotropic agents of selectively bred dominant and submissive animals,” Behav. Brain Res.236(1), 225–235 (2013). [PubMed]
  31. A. Pinhasov, J. Crooke, D. Rosenthal, D. Brenneman, and E. Malatynska, “Reduction of Submissive Behavior Model for antidepressant drug activity testing: study using a video-tracking system,” Behav. Pharmacol.16(8), 657–664 (2005). [CrossRef] [PubMed]
  32. E. Malatynska, A. Pinhasov, J. J. Crooke, V. L. Smith-Swintosky, and D. E. Brenneman, “Reduction of dominant or submissive behaviors as models for antimanic or antidepressant drug testing: technical considerations,” J. Neurosci. Methods165(2), 175–182 (2007). [CrossRef] [PubMed]
  33. A. Moussaieff, M. Gross, E. Nesher, T. Tikhonov, G. Yadid, and A. Pinhasov, “Incensole acetate reduces depressive-like behavior and modulates hippocampal BDNF and CRF expression of submissive animals,” J. Psychopharmacol. (Oxford)26(12), 1584–1593 (2012). [CrossRef] [PubMed]
  34. E. Malatynska, A. Pinhasov, C. J. Creighton, J. J. Crooke, A. B. Reitz, D. E. Brenneman, and M. S. Lubomirski, “Assessing activity onset time and efficacy for clinically effective antidepressant and antimanic drugs in animal models based on dominant-submissive relationships,” Neurosci. Biobehav. Rev.31(6), 904–919 (2007). [CrossRef] [PubMed]
  35. E. Nesher, V. Peskov, A. Rylova, O. Raz, and A. Pinhasov, “Comparative analysis of the behavioral and biomolecular parameters of four mouse strains,” J. Mol. Neurosci.46(2), 276–284 (2012). [CrossRef] [PubMed]
  36. J. T. Moon and S. R. Marschner, “Simulating multiple scattering in hair using a photon mapping approach,” ACM Trans. Graph.25(3), 1067–1074 (2006). [CrossRef]
  37. F. H. Mustafa and M. S. Jaafar, “Shaving area of unwanted hair before laser operation is useful in cosmetic procedure: A simulation study,” J. Saudi Society Dermat. Surg. (Article in Press).
  38. J. Qin, L. Shi, S. Dziennis, R. Reif, and R. K. Wang, “Fast synchronized dual-wavelength laser speckle imaging system for monitoring hemodynamic changes in a stroke mouse model,” Opt. Lett.37(19), 4005–4007 (2012). [CrossRef] [PubMed]
  39. P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt.13(4), 044007 (2008). [CrossRef] [PubMed]
  40. A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, “Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex,” Neuron39(2), 353–359 (2003). [CrossRef] [PubMed]
  41. D. T. Delpy and M. Cope, “Quantification in tissue near-infrared spectroscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 649–659 (1997). [CrossRef]
  42. E. M. C. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt.12(5), 051402 (2007). [CrossRef] [PubMed]
  43. E. M. Sevick, B. Chance, J. Leigh, S. Nioka, and M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem.195(2), 330–351 (1991). [CrossRef] [PubMed]
  44. C. H. Chen-Bee, T. Agoncillo, Y. Xiong, and R. D. Frostig, “The triphasic intrinsic signal: implications for functional imaging,” J. Neurosci.27(17), 4572–4586 (2007). [CrossRef] [PubMed]
  45. S. Sheth, M. Nemoto, M. Guiou, M. Walker, N. Pouratian, and A. W. Toga, “Evaluation of coupling between optical intrinsic signals and neuronal activity in rat somatosensory cortex,” Neuroimage19(3), 884–894 (2003). [CrossRef] [PubMed]
  46. S. B. Chen, Z. Feng, P. C. Li, S. L. Jacques, S. Q. Zeng, and Q. M. Luo, “In vivo optical reflectance imaging of spreading depression waves in rat brain with and without focal cerebral ischemia,” J. Biomed. Opt.11(3), 034002 (2006). [CrossRef] [PubMed]
  47. M. R. Zhao, M. A. Suh, H. T. Ma, C. Perry, A. Geneslaw, and T. H. Schwartz, “Focal increases in perfusion and decreases in hemoglobin oxygenation precede seizure onset in spontaneous human epilepsy,” Epilepsia48(11), 2059–2067 (2007). [CrossRef] [PubMed]
  48. Z. C. Luo, Z. J. Yuan, Y. T. Pan, and C. W. Du, “Simultaneous imaging of cortical hemodynamics and blood oxygenation change during cerebral ischemia using dual-wavelength laser speckle contrast imaging,” Opt. Lett.34(9), 1480–1482 (2009). [CrossRef] [PubMed]
  49. R. L. Grubb, M. E. Raichle, J. O. Eichling, and M. M. Ter-Pogossian, “The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time,” Stroke5(5), 630–639 (1974). [CrossRef] [PubMed]
  50. H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys.22(8), 1209–1217 (1995). [CrossRef] [PubMed]
  51. W. G. Zijlstra, A. Buursma, and O. Willem van Assendelft, eds., Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin: Determination and Application. 2000, VSP. 368.
  52. A. Roggan, M. Friebel, K. Do Rschel, A. Hahn, and G. Mu Ller, “Optical Properties of Circulating Human Blood in the Wavelength Range 400-2500 nm,” J. Biomed. Opt.4(1), 36–46 (1999). [CrossRef] [PubMed]
  53. R. Nachabé, B. H. W. Hendriks, M. van der Voort, A. E. Desjardins, and H. J. C. M. Sterenborg, “Estimation of biological chromophores using diffuse optical spectroscopy: benefit of extending the UV-VIS wavelength range to include 1000 to 1600 nm,” Biomed. Opt. Express1(5), 1432–1442 (2010). [CrossRef] [PubMed]
  54. S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt.17(7), 077005 (2012). [CrossRef] [PubMed]
  55. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-microm wavelength region,” Appl. Opt.12(3), 555–563 (1973). [CrossRef] [PubMed]
  56. J. Berwick, C. Martin, J. Martindale, M. Jones, D. Johnston, Y. Zheng, P. Redgrave, and J. Mayhew, “Hemodynamic response in the unanesthetized rat: intrinsic optical imaging and spectroscopy of the barrel cortex,” J. Cereb. Blood Flow Metab.22(6), 670–679 (2002). [CrossRef] [PubMed]
  57. S. Kawauchi, I. Nishidate, Y. Uozumi, H. Nawashiro, H. Ashida, and S. Sato, “Diffuse light reflectance signals as potential indicators of loss of viability in brain tissue due to hypoxia: charge-coupled-device-based imaging and fiber-based measurement,” J. Biomed. Opt.18(1), 015003 (2013). [CrossRef] [PubMed]
  58. P. Delaveau, M. Jabourian, C. Lemogne, S. Guionnet, L. Bergouignan, and P. Fossati, “Brain effects of antidepressants in major depression: a meta-analysis of emotional processing studies,” J. Affect. Disord.130(1-2), 66–74 (2011). [CrossRef] [PubMed]
  59. M. Lazebnik, D. L. Marks, K. Potgieter, R. Gillette, and S. A. Boppart, “Functional optical coherence tomography for detecting neural activity through scattering changes,” Opt. Lett.28(14), 1218–1220 (2003). [CrossRef] [PubMed]
  60. D. M. Rector, K. M. Carter, P. L. Volegov, and J. S. George, “Spatio-temporal mapping of rat whisker barrels with fast scattered light signals,” Neuroimage26(2), 619–627 (2005). [CrossRef] [PubMed]
  61. D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, “Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument,” Phys. Med. Biol.46(1), 41–62 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited