OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 7 — Jul. 1, 2014
  • pp: 2215–2230

Detecting abnormality in optic nerve head images using a feature extraction analysis

Haogang Zhu, Ali Poostchi, Stephen A Vernon, and David P Crabb  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 7, pp. 2215-2230 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (10698 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Imaging and evaluation of the optic nerve head (ONH) plays an essential part in the detection and clinical management of glaucoma. The morphological characteristics of ONHs vary greatly from person to person and this variability means it is difficult to quantify them in a standardized way. We developed and evaluated a feature extraction approach using shift-invariant wavelet packet and kernel principal component analysis to quantify the shape features in ONH images acquired by scanning laser ophthalmoscopy (Heidelberg Retina Tomograph [HRT]). The methods were developed and tested on 1996 eyes from three different clinical centers. A shape abnormality score (SAS) was developed from extracted features using a Gaussian process to identify glaucomatous abnormality. SAS can be used as a diagnostic index to quantify the overall likelihood of ONH abnormality. Maps showing areas of likely abnormality within the ONH were also derived. Diagnostic performance of the technique, as estimated by ROC analysis, was significantly better than the classification tools currently used in the HRT software – the technique offers the additional advantage of working with all images and is fully automated.

© 2014 Optical Society of America

OCIS Codes
(100.2960) Image processing : Image analysis
(100.7410) Image processing : Wavelets
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(150.1835) Machine vision : Defect understanding
(100.4993) Image processing : Pattern recognition, Baysian processors
(170.5755) Medical optics and biotechnology : Retina scanning

ToC Category:
Image Processing

Original Manuscript: April 2, 2014
Revised Manuscript: June 4, 2014
Manuscript Accepted: June 4, 2014
Published: June 11, 2014

Haogang Zhu, Ali Poostchi, Stephen A Vernon, and David P Crabb, "Detecting abnormality in optic nerve head images using a feature extraction analysis," Biomed. Opt. Express 5, 2215-2230 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Jonas, W. M. Budde, and S. Panda-Jonas, “Ophthalmoscopic evaluation of the optic nerve head,” Surv. Ophthalmol.43(4), 293–320 (1999). [CrossRef] [PubMed]
  2. C. F. Burgoyne, J. C. Downs, A. J. Bellezza, J. K. Suh, and R. T. Hart, “The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage,” Prog. Retin. Eye Res.24(1), 39–73 (2005). [CrossRef] [PubMed]
  3. I. A. Sigal, J. G. Flanagan, I. Tertinegg, and C. R. Ethier, “3D morphometry of the human optic nerve head,” Exp. Eye Res.90(1), 70–80 (2010). [CrossRef] [PubMed]
  4. P. G. Sanfilippo, A. Cardini, A. W. Hewitt, J. G. Crowston, and D. A. Mackey, “Optic disc morphology--rethinking shape,” Prog. Retin. Eye Res.28(4), 227–248 (2009). [CrossRef] [PubMed]
  5. R. H. Webb, G. W. Hughes, and F. C. Delori, “Confocal scanning laser ophthalmoscope,” Appl. Opt.26(8), 1492–1499 (1987). [CrossRef] [PubMed]
  6. G. Wollstein, D. F. Garway-Heath, and R. A. Hitchings, “Identification of early glaucoma cases with the scanning laser ophthalmoscope,” Ophthalmology105(8), 1557–1563 (1998). [CrossRef] [PubMed]
  7. C. Y. Mardin and A. G. Jünemann, “The diagnostic value of optic nerve imaging in early glaucoma,” Curr. Opin. Ophthalmol.12(2), 100–104 (2001). [CrossRef] [PubMed]
  8. M. R. Kesen, G. L. Spaeth, J. D. Henderer, M. L. Pereira, A. F. Smith, and W. C. Steinmann, “The Heidelberg Retina Tomograph vs clinical impression in the diagnosis of glaucoma,” Am. J. Ophthalmol.133(5), 613–616 (2002). [CrossRef] [PubMed]
  9. D. S. Kamal, A. C. Viswanathan, D. F. Garway-Heath, R. A. Hitchings, D. Poinoosawmy, and C. Bunce, “Detection of optic disc change with the Heidelberg retina tomograph before confirmed visual field change in ocular hypertensives converting to early glaucoma,” Br. J. Ophthalmol.83(3), 290–294 (1999). [CrossRef] [PubMed]
  10. N. G. Strouthidis and D. F. Garway-Heath, “New developments in Heidelberg retina tomograph for glaucoma,” Curr. Opin. Ophthalmol.19(2), 141–148 (2008). [CrossRef] [PubMed]
  11. D. F. Garway-Heath and R. A. Hitchings, “Quantitative evaluation of the optic nerve head in early glaucoma,” Br. J. Ophthalmol.82(4), 352–361 (1998). [CrossRef] [PubMed]
  12. J. Caprioli and J. M. Miller, “Optic disc rim area is related to disc size in normal subjects,” Arch. Ophthalmol.105(12), 1683–1685 (1987). [CrossRef] [PubMed]
  13. J. B. Jonas, G. C. Gusek, and G. O. Naumann, “Optic disc, cup and neuroretinal rim size, configuration and correlations in normal eyes,” Invest. Ophthalmol. Vis. Sci.29(7), 1151–1158 (1988). [PubMed]
  14. C. Y. Mardin, T. Hothorn, A. Peters, A. G. Jünemann, N. X. Nguyen, and B. Lausen, “New Glaucoma Classification Method Based on Standard Heidelberg Retina Tomograph Parameters by Bagging Classification Trees,” J. Glaucoma12(4), 340–346 (2003). [CrossRef] [PubMed]
  15. B. A. Ford, P. H. Artes, T. A. McCormick, M. T. Nicolela, R. P. LeBlanc, and B. C. Chauhan, “Comparison of data analysis tools for detection of glaucoma with the heidelberg retina tomograph,” Ophthalmology110(6), 1145–1150 (2003). [CrossRef] [PubMed]
  16. L. M. Zangwill, K. Chan, C. Bowd, J. Hao, T.-W. Lee, R. N. Weinreb, T. J. Sejnowski, and M. H. Goldbaum, “Heidelberg Retina Tomograph Measurements of the Optic Disc and Parapapillary Retina for Detecting Glaucoma Analyzed by Machine Learning Classifiers,” Invest. Ophthalmol. Vis. Sci.45(9), 3144–3151 (2004). [CrossRef] [PubMed]
  17. M. Iester, V. Mariotti, F. Lanza, and G. Calabria, “The effect of contour line position on optic nerve head analysis by Heidelberg Retina Tomograph,” Eur. J. Ophthalmol.19(6), 942–948 (2009). [PubMed]
  18. N. V. Swindale, G. Stjepanovic, A. Chin, and F. S. Mikelberg, “Automated Analysis of Normal and Glaucomatous Optic Nerve Head Topography Images,” Invest. Ophthalmol. Vis. Sci.41(7), 1730–1742 (2000). [PubMed]
  19. A. Coops, D. B. Henson, A. J. Kwartz, and P. H. Artes, “Automated Analysis of Heidelberg Retina Tomograph Optic Disc Images by Glaucoma Probability Score,” Invest. Ophthalmol. Vis. Sci.47(12), 5348–5355 (2006). [CrossRef] [PubMed]
  20. M. J. Hawker, S. A. Vernon, and G. Ainsworth, “Specificity of the Heidelberg Retina Tomograph’s diagnostic algorithms in a normal elderly population: the Bridlington Eye Assessment Project,” Ophthalmology113(5), 778–785 (2006). [CrossRef] [PubMed]
  21. H. Saito, T. Tsutsumi, M. Araie, A. Tomidokoro, and A. Iwase, “Sensitivity and specificity of the Heidelberg Retina Tomograph II Version 3.0 in a population-based study: the Tajimi Study,” Ophthalmology116(10), 1854–1861 (2009). [CrossRef] [PubMed]
  22. M. Iester, F. S. Mikelberg, and S. M. Drance, “The effect of optic disc size on diagnostic precision with the Heidelberg retina tomograph,” Ophthalmology104(3), 545–548 (1997). [CrossRef] [PubMed]
  23. M. J. Hawker, S. A. Vernon, C. L. Tattersall, and H. S. Dua, “Linear regression modeling of rim area to discriminate between normal and glaucomatous optic nerve heads: the Bridlington Eye Assessment Project,” J. Glaucoma16(4), 345–351 (2007). [CrossRef] [PubMed]
  24. P. H. Artes and D. P. Crabb, “Estimating Normative Limits of Heidelberg Retina Tomograph Optic Disc Rim Area with Quantile Regression,” Invest. Ophthalmol. Vis. Sci.51(1), 355–361 (2010). [CrossRef] [PubMed]
  25. A. J. Kwartz, D. B. Henson, R. A. Harper, A. F. Spencer, and D. McLeod, “The effectiveness of the Heidelberg Retina Tomograph and laser diagnostic glaucoma scanning system (GDx) in detecting and monitoring glaucoma,” Health Technol. Assess.9(46), 1–132 (2005). [PubMed]
  26. S. A. Vernon, M. J. Hawker, G. Ainsworth, J. G. Hillman, H. K. Macnab, and H. S. Dua, “Laser Scanning Tomography of the Optic Nerve Head in a Normal Elderly Population: The Bridlington Eye Assessment Project,” Invest. Ophthalmol. Vis. Sci.46(8), 2823–2828 (2005). [CrossRef] [PubMed]
  27. M. J. Hawker, S. A. Vernon, C. L. Tattersall, and H. S. Dua, “Detecting glaucoma with RADAAR: the Bridlington Eye Assessment Project,” Br. J. Ophthalmol.90(6), 744–748 (2006). [CrossRef] [PubMed]
  28. D. B. Henson, Visual Fields, 2nd ed (Oxford University Press, 2000).
  29. N. G. Strouthidis, E. T. White, V. M. Owen, T. A. Ho, C. J. Hammond, and D. F. Garway-Heath, “Factors affecting the test-retest variability of Heidelberg retina tomograph and Heidelberg retina tomograph II measurements,” Br. J. Ophthalmol.89(11), 1427–1432 (2005). [CrossRef] [PubMed]
  30. M. Vetterli, “Wavelets, approximation, and compression,” IEEE Signal Process. Mag.18, 59–73 (2010).
  31. J.-L. Starck and F. Murtagh, “Astronomical image and signal processing: looking at noise, information and scale,” IEEE Signal Process. Mag.18(2), 30–40 (2001). [CrossRef]
  32. A. Skodras, C. Christopoulos, and T. Ebrahimi, “The JPEG 2000 still image compression standard,” IEEE Signal Process. Mag.18(5), 36–58 (2001). [CrossRef]
  33. T. Chang and C. J. Kuo, “Texture analysis and classification with tree-structured wavelet transform,” IEEE Trans. Image Process.2(4), 429–441 (1993). [CrossRef] [PubMed]
  34. A. Laine and J. Fan, “Texture Classification by Wavelet Packet Signatures,” IEEE Trans. Pattern Anal. Mach. Intell.15(11), 1186–1191 (1993). [CrossRef]
  35. C.-M. Pun and M.-C. Lee, “Extraction of Shift Invariant Wavelet Features for Classification of Images with Different Sizes,” IEEE Trans. Pattern Anal. Mach. Intell.26(9), 1228–1233 (2004). [CrossRef] [PubMed]
  36. S. G. Mallat, “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation,” IEEE Trans. Pattern Anal. Mach. Intell.11(7), 674–693 (1989). [CrossRef]
  37. I. W. Selesnick, R. G. Baraniuk, and N. G. Kingsbury, “The dual-tree complex wavelet transform,” IEEE Signal Process. Mag.22(6), 123–151 (2005). [CrossRef]
  38. P. L. Dragotti and M. Vetterli, “Wavelet footprints: theory, algorithms, and applications,” IEEE Trans. Signal Process.51(5), 1306–1323 (2003). [CrossRef]
  39. N. Kingsbury, “Image processing with complex wavelets,” Philos. Trans. R. Soc., A357(1760), 2543–2560 (1999). [CrossRef]
  40. R. R. Coifman and M. V. Wickerhauser, “Entropy-based algorithms for best basis selection,” IEEE Trans. Inf. Theory38(2), 713–718 (1992). [CrossRef]
  41. T. W. Ridler and S. Calvard, “Picture Thresholding Using an Iterative Selection Method,” IEEE Trans. Syst. Man Cybern.8(8), 630–632 (1978). [CrossRef]
  42. C. K. Chui, An introduction to wavelets (Academic Press Professional, Inc., 1992).
  43. I. Daubechies, Ten lectures on wavelets (Society for Industrial and Applied Mathematics, 1992).
  44. B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear Component Analysis as a Kernel Eigenvalue Problem,” Neural Comput.10(5), 1299–1319 (1998). [CrossRef]
  45. J. Yang, A. F. Frangi, J. Y. Yang, D. Zhang, and Z. Jin, “KPCA plus LDA: a Complete Kernel Fisher Discriminant Framework for Feature Extraction and Recognition,” IEEE Trans. Pattern Anal. Mach. Intell.27(2), 230–244 (2005). [CrossRef] [PubMed]
  46. K. Jung, K. Kim, and H. J. Kim, “Face recognition using kernel principal component analysis,” IEEE Sig. Proc. Lett.9(2), 40–42 (2002). [CrossRef]
  47. C. K. I. Williams, “Regression with Gaussian Processes,” in Mathematics of Neural Networks: Models, Algorithms and Applications, (Kluwer, 1995)
  48. C. K. I. Williams and D. Barber, “Bayesian classification with Gaussian processes,” IEEE Trans. Pattern Anal. Machine Intelligence20(12), 1342–1351 (1998). [CrossRef]
  49. T. P. Minka, “A family of algorithms for approximate bayesian inference,” (Massachusetts Institute of Technology, 2001).
  50. C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning (MIT Press, 2006).
  51. M. F. Møller, “A scaled conjugate gradient algorithm for fast supervised learning,” Neural Netw.6(4), 525–533 (1993). [CrossRef]
  52. M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving linear systems,” J. Res. Natl. Bur. Stand.49(6), 409–436 (1952). [CrossRef]
  53. J. T. Kwok and I. W. Tsang, “The pre-image problem in kernel methods,” IEEE Trans. Neural Netw.15(6), 1517–1525 (2004). [CrossRef] [PubMed]
  54. K. H. Park, S. J. Park, Y. J. Lee, J. Y. Kim, and J. Caprioli, “Ability of peripapillary atrophy parameters to differentiate normal-tension glaucoma from glaucomalike disk,” J. Glaucoma10(2), 95–101 (2001). [CrossRef] [PubMed]
  55. M. J. Hawker, G. Ainsworth, S. A. Vernon, and H. S. Dua, “Observer agreement using the Heidelberg retina tomograph: the Bridlington Eye Assessment Project,” J. Glaucoma17(4), 280–286 (2008). [CrossRef] [PubMed]
  56. P. M. Bossuyt, J. B. Reitsma, D. E. Bruns, C. A. Gatsonis, P. P. Glasziou, L. M. Irwig, D. Moher, D. Rennie, H. C. de Vet, J. G. Lijmer, and Standards for Reporting of Diagnostic Accuracy, “The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration,” Ann. Intern. Med.138(1), 1–12 (2003). [CrossRef] [PubMed]
  57. B. C. Chauhan, J. W. Blanchard, D. C. Hamilton, and R. P. LeBlanc, “Technique for detecting serial topographic changes in the optic disc and peripapillary retina using scanning laser tomography,” Invest. Ophthalmol. Vis. Sci.41(3), 775–782 (2000). [PubMed]
  58. C. Bowd, M. Balasubramanian, R. N. Weinreb, G. Vizzeri, L. M. Alencar, N. O’Leary, P. A. Sample, and L. M. Zangwill, “Performance of confocal scanning laser tomograph Topographic Change Analysis (TCA) for assessing glaucomatous progression,” Invest. Ophthalmol. Vis. Sci.50(2), 691–701 (2008). [CrossRef] [PubMed]
  59. N. G. Strouthidis, H. Yang, J. F. Reynaud, J. L. Grimm, S. K. Gardiner, B. Fortune, and C. F. Burgoyne, “Comparison of Clinical and Spectral Domain Optical Coherence Tomography Optic Disc Margin Anatomy,” Invest. Ophthalmol. Vis. Sci.50(10), 4709–4718 (2009). [CrossRef] [PubMed]
  60. A. S. Reis, G. P. Sharpe, H. Yang, M. T. Nicolela, C. F. Burgoyne, and B. C. Chauhan, “Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography,” Ophthalmology119(4), 738–747 (2012). [CrossRef] [PubMed]
  61. B. C. Chauhan and C. F. Burgoyne, “From clinical examination of the optic disc to clinical assessment of the optic nerve head: a paradigm change,” Am. J. Ophthalmol.156(2), 218–227 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited