OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 7 — Jul. 1, 2014
  • pp: 2262–2284

Adaptive optics optical coherence tomography with dynamic retinal tracking

Omer P. Kocaoglu, R. Daniel Ferguson, Ravi S. Jonnal, Zhuolin Liu, Qiang Wang, Daniel X. Hammer, and Donald T. Miller  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 7, pp. 2262-2284 (2014)
http://dx.doi.org/10.1364/BOE.5.002262


View Full Text Article

Enhanced HTML    Acrobat PDF (5416 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Adaptive optics optical coherence tomography (AO-OCT) is a highly sensitive and noninvasive method for three dimensional imaging of the microscopic retina. Like all in vivo retinal imaging techniques, however, it suffers the effects of involuntary eye movements that occur even under normal fixation. In this study we investigated dynamic retinal tracking to measure and correct eye motion at KHz rates for AO-OCT imaging. A customized retina tracking module was integrated into the sample arm of the 2nd-generation Indiana AO-OCT system and images were acquired on three subjects. Analyses were developed based on temporal amplitude and spatial power spectra in conjunction with strip-wise registration to independently measure AO-OCT tracking performance. After optimization of the tracker parameters, the system was found to correct eye movements up to 100 Hz and reduce residual motion to 10 µm root mean square. Between session precision was 33 µm. Performance was limited by tracker-generated noise at high temporal frequencies.

© 2014 Optical Society of America

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.0110) Medical optics and biotechnology : Imaging systems
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(330.5310) Vision, color, and visual optics : Vision - photoreceptors
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Ophthalmology Applications

History
Original Manuscript: March 25, 2014
Revised Manuscript: June 11, 2014
Manuscript Accepted: June 11, 2014
Published: June 17, 2014

Citation
Omer P. Kocaoglu, R. Daniel Ferguson, Ravi S. Jonnal, Zhuolin Liu, Qiang Wang, Daniel X. Hammer, and Donald T. Miller, "Adaptive optics optical coherence tomography with dynamic retinal tracking," Biomed. Opt. Express 5, 2262-2284 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-7-2262


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. J. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision Res.45(28), 3432–3444 (2005). [CrossRef] [PubMed]
  2. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express13(21), 8532–8546 (2005). [CrossRef] [PubMed]
  3. Y. Zhang, J. Rha, R. S. Jonnal, and D. T. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express13(12), 4792–4811 (2005). [CrossRef] [PubMed]
  4. R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Oliver, and J. S. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. A24(5), 1373–1383 (2007). [CrossRef] [PubMed]
  5. B. Cense, E. Koperda, J. M. Brown, O. P. Kocaoglu, W. Gao, R. S. Jonnal, and D. T. Miller, “Volumetric retinal imaging with ultrahigh-resolution spectral-domain optical coherence tomography and adaptive optics using two broadband light sources,” Opt. Express17(5), 4095–4111 (2009). [CrossRef] [PubMed]
  6. C. Torti, B. Povazay, B. Hofer, A. Unterhuber, J. Carroll, P. K. Ahnelt, and W. Drexler, “Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina,” Opt. Express17(22), 19382–19400 (2009). [CrossRef] [PubMed]
  7. O. P. Kocaoglu, B. Cense, R. S. Jonnal, Q. Wang, S. Lee, W. Gao, and D. T. Miller, “Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics,” Vision Res.51(16), 1835–1844 (2011). [CrossRef] [PubMed]
  8. O. P. Kocaoglu, S. Lee, R. S. Jonnal, Q. Wang, A. E. Herde, J. C. Derby, W. Gao, and D. T. Miller, “Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics,” Biomed. Opt. Express2(4), 748–763 (2011). [CrossRef] [PubMed]
  9. R. S. Jonnal, O. P. Kocaoglu, Q. Wang, S. Lee, and D. T. Miller, “Phase-sensitive imaging of the outer retina using optical coherence tomography and adaptive optics,” Biomed. Opt. Express3(1), 104–124 (2012). [CrossRef] [PubMed]
  10. E. J. Fernández, A. Unterhuber, B. Povazay, B. Hermann, P. Artal, and W. Drexler, “Chromatic aberration correction of the human eye for retinal imaging in the near infrared,” Opt. Express14(13), 6213–6225 (2006). [CrossRef] [PubMed]
  11. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express14(10), 4380–4394 (2006). [CrossRef] [PubMed]
  12. R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express16(11), 8126–8143 (2008). [CrossRef] [PubMed]
  13. S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci.5(3), 229–240 (2004). [CrossRef] [PubMed]
  14. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed Spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008). [CrossRef] [PubMed]
  15. L. An, P. Li, T. T. Shen, and R. Wang, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 Alines per second,” Biomed. Opt. Express2(10), 2770–2783 (2011). [CrossRef] [PubMed]
  16. O. O. Ahsen, Y. K. Tao, B. M. Potsaid, Y. Sheikine, J. Jiang, I. Grulkowski, T. H. Tsai, V. Jayaraman, M. F. Kraus, J. L. Connolly, J. Hornegger, A. Cable, and J. G. Fujimoto, “Swept source optical coherence microscopy using a 1310 nm VCSEL light source,” Opt. Express21(15), 18021–18033 (2013). [CrossRef] [PubMed]
  17. T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, “Multi-MHz retinal OCT,” Biomed. Opt. Express4(10), 1890–1908 (2013). [CrossRef] [PubMed]
  18. R. J. Zawadzki, S. M. Jones, S. Pilli, S. Balderas-Mata, D. Y. Kim, S. S. Olivier, and J. S. Werner, “Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging,” Biomed. Opt. Express2(6), 1674–1686 (2011). [CrossRef] [PubMed]
  19. C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, “Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy,” Opt. Express14(2), 487–497 (2006). [CrossRef] [PubMed]
  20. C. K. Sheehy, Q. Yang, D. W. Arathorn, P. Tiruveedhula, J. F. de Boer, and A. Roorda, “High-speed, image-based eye tracking with a scanning laser ophthalmoscope,” Biomed. Opt. Express3(10), 2611–2622 (2012). [CrossRef] [PubMed]
  21. K. V. Vienola, B. Braaf, C. K. Sheehy, Q. Yang, P. Tiruveedhula, D. W. Arathorn, J. F. de Boer, and A. Roorda, “Real-time eye motion compensation for OCT imaging with tracking SLO,” Biomed. Opt. Express3(11), 2950–2963 (2012). [CrossRef] [PubMed]
  22. B. Braaf, K. V. Vienola, C. K. Sheehy, Q. Yang, K. A. Vermeer, P. Tiruveedhula, D. W. Arathorn, A. Roorda, and J. F. de Boer, “Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO,” Biomed. Opt. Express4(1), 51–65 (2013). [CrossRef] [PubMed]
  23. R. D. Ferguson, D. X. Hammer, A. E. Elsner, R. H. Webb, S. A. Burns, and J. J. Weiter, “Wide-field retinal hemodynamic imaging with the tracking scanning laser ophthalmoscope,” Opt. Express12(21), 5198–5208 (2004). [CrossRef] [PubMed]
  24. R. D. Ferguson, D. X. Hammer, L. A. Paunescu, S. Beaton, and J. S. Schuman, “Tracking optical coherence tomography,” Opt. Lett.29(18), 2139–2141 (2004). [CrossRef] [PubMed]
  25. D. X. Hammer, R. D. Ferguson, N. V. Iftimia, T. Ustun, G. Wollstein, H. Ishikawa, M. L. Gabriele, W. D. Dilworth, L. Kagemann, and J. S. Schuman, “Advanced scanning methods with tracking optical coherence tomography,” Opt. Express13(20), 7937–7947 (2005). [CrossRef] [PubMed]
  26. S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, “Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A24(5), 1313–1326 (2007). [CrossRef] [PubMed]
  27. G. Maguluri, M. Mujat, B. H. Park, K. H. Kim, W. Sun, N. V. Iftimia, R. D. Ferguson, D. X. Hammer, T. C. Chen, and J. F. de Boer, “Three dimensional tracking for volumetric spectral-domain optical coherence tomography,” Opt. Express15(25), 16808–16817 (2007). [CrossRef] [PubMed]
  28. R. D. Ferguson, Z. Zhong, D. X. Hammer, M. Mujat, A. H. Patel, C. Deng, W. Zou, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope with integrated wide-field retinal imaging and tracking,” J. Opt. Soc. Am. A27(11), A265–A277 (2010). [CrossRef] [PubMed]
  29. R. D. Ferguson, “Servo tracking system utilizing phase-sensitive detection of reflectance variation,” US Patent #5767941 and US Patent #5943115 (1996).
  30. D. P. Wornson, G. W. Hughes, and R. H. Webb, “Fundus tracking with the scanning laser ophthalmoscope,” Appl. Opt.26(8), 1500–1504 (1987). [CrossRef] [PubMed]
  31. D. X. Hammer, R. D. Ferguson, J. C. Magill, M. A. White, A. E. Elsner, and R. H. Webb, “Compact scanning laser ophthalmoscope with high-speed retinal tracker,” Appl. Opt.42(22), 4621–4632 (2003). [CrossRef] [PubMed]
  32. D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging,” Opt. Express14(8), 3354–3367 (2006). [CrossRef] [PubMed]
  33. H. Ishikawa, M. L. Gabriele, G. Wollstein, R. D. Ferguson, D. X. Hammer, L. A. Paunescu, S. A. Beaton, and J. S. Schuman, “Retinal nerve fiber layer assessment using optical coherence tomography with active optic nerve head tracking,” Invest. Ophthalmol. Vis. Sci.47(3), 964–967 (2006). [CrossRef] [PubMed]
  34. Z. Liu, O. P. Kocaoglu, and D. T. Miller, “In-the-plane design of an off-axis ophthalmic adaptive optics system using toroidal mirrors,” Biomed. Opt. Express4(12), 3007–3029 (2013). [CrossRef] [PubMed]
  35. ANSI Z136, “Safe use of lasers,” Laser Institute of America (2007).
  36. M. Ezenman, P. E. Hallett, and R. C. Frecker, “Power spectra for ocular drift and tremor,” Vision Res.25(11), 1635–1640 (1985). [CrossRef] [PubMed]
  37. S. B. Stevenson, A. Roorda, and G. Kumar, “Eye tracking with the adaptive optics scanning laser ophthalmoscope,” in Proceedings of the 2010 Symposium on Eye-Tracking Research and Applications, (Association for Computed Machinery, 2010), 195–198. [CrossRef]
  38. K. Hocke and N. Kampfer, “Gap filling and noise reduction of unevenly sampled data by means of the Lomb-Scargle periodogram,” Atmos. Chem. Phys.9(12), 4197–4206 (2009). [CrossRef]
  39. A. V. Oppenheim and J. S. Lim, “The Importance of Phase in Signals,” in Proceedings of the IEEE, 1981), 529–541. [CrossRef]
  40. J. C. Dainty, Stellar Speckle Interferometry, 2nd ed., Laser Speckle and Related Phenomena (Springer Verlag, Germany, 1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (179 KB)     
» Media 2: AVI (1271 KB)     
» Media 3: AVI (1466 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited