OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 7 — Jul. 1, 2014
  • pp: 2285–2300

Modelling of diffraction grating based optical filters for fluorescence detection of biomolecules

M. Kovačič, J. Krč, B. Lipovšek, and M. Topič  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 7, pp. 2285-2300 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2631 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The detection of biomolecules based on fluorescence measurements is a powerful diagnostic tool for the acquisition of genetic, proteomic and cellular information. One key performance limiting factor remains the integrated optical filter, which is designed to reject strong excitation light while transmitting weak emission (fluorescent) light to the photodetector. Conventional filters have several disadvantages. For instance absorbing filters, like those made from amorphous silicon carbide, exhibit low rejection ratios, especially in the case of small Stokes’ shift fluorophores (e.g. green fluorescent protein GFP with λexc = 480 nm and λem = 510 nm), whereas interference filters comprising many layers require complex fabrication. This paper describes an alternative solution based on dielectric diffraction gratings. These filters are not only highly efficient but require a smaller number of manufacturing steps. Using FEM-based optical modelling as a design optimization tool, three filtering concepts are explored: (i) a diffraction grating fabricated on the surface of an absorbing filter, (ii) a diffraction grating embedded in a host material with a low refractive index, and (iii) a combination of an embedded grating and an absorbing filter. Both concepts involving an embedded grating show high rejection ratios (over 100,000) for the case of GFP, but also high sensitivity to manufacturing errors and variations in the incident angle of the excitation light. Despite this, simulations show that a 60 times improvement in the rejection ratio relative to a conventional flat absorbing filter can be obtained using an optimized embedded diffraction grating fabricated on top of an absorbing filter.

© 2014 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(310.6845) Thin films : Thin film devices and applications
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Novel Light Sources, Optics, and Detectors

Original Manuscript: February 26, 2014
Revised Manuscript: April 25, 2014
Manuscript Accepted: May 30, 2014
Published: June 18, 2014

M. Kovačič, J. Krč, B. Lipovšek, and M. Topič, "Modelling of diffraction grating based optical filters for fluorescence detection of biomolecules," Biomed. Opt. Express 5, 2285-2300 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. L. Rich and D. G. Myszka, “Survey of the 2009 commercial optical biosensor literature,” J. Mol. Recognit.24(6), 892–914 (2011). [CrossRef] [PubMed]
  2. D. Bowtell, J. Sambrook, and D. N. A. Microarrays, A Molecular Cloning Manual, Cold Spring Harbor Laboratory Press, (2003).
  3. E. M. Goldys, Fluorescence Applications in Biotechnology and Life Sciences (John Wiley & Sons, 2009).
  4. A. Roda, Chemiluminescence and Bioluminescence: Past, Present and Future (Royal Society of Chemistry 2010).
  5. N. Ohta and A. Robertson, Colorimetry: Fundamentals and Applications (John Wiley & Sons, 2006).
  6. J. R. Epstein, I. Biran, and D. R. Walt, “Fluorescence-based nucleic acid detection and microarrays,” Anal. Chim. Acta469(1), 3–36 (2002). [CrossRef]
  7. The Molecular Probes® Handbook.” [Online]. Available: http://www.lifetechnologies.com/si/en/home/ references/ molecular-probes-the-handbook.html . [Accessed: 18-Apr-2014].
  8. R. A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, 2005).
  9. J. P. Conde, A. Jóskowiak, B. Lipovšek, A. Pimentel, A. T. Pereira, M. Santos, J. Krč, M. Topic, D. M. F. Prazeres, and V. Chu, “Spectral selectivity constraints in fluo- rescence detection of biomolecules using amorphous silicon based detectors,” Phys. Status Solidi C7(3–4), 1156–1159 (2010).
  10. A. C. Pimentel, D. M. F. Prazeres, V. Chu, and J. P. Conde, “Fluorescence detection of DNA using an amorphous silicon p-i-n photodiode,” J. Appl. Phys.104(5), 054913 (2008). [CrossRef]
  11. F. Dong, V. Chu, and J. P. Conde, “Submicron thin-film amorphous silicon photoconductive light sensors,” Sens. Actuators Phys.170(1-2), 32–35 (2011). [CrossRef]
  12. A. Joskowiak, M. S. Santos, D. M. F. Prazeres, V. Chu, and J. P. Conde, “Integration of thin film amorphous silicon photodetector with lab-on-chip for monitoring protein fluorescence in solution and in live microbial cells,” Sens. Actuators B Chem.156(2), 662–667 (2011). [CrossRef]
  13. A. Jóskowiak, N. Stasio, V. Chu, D. M. F. Prazeres, and J. P. Conde, “Integrated detection of intrinsic fluorophores in live microbial cells using an array of thin film amorphous silicon photodetectors,” Biosens. Bioelectron.36(1), 242–249 (2012). [CrossRef] [PubMed]
  14. B. Lipovsek, A. Joskowiak, J. Krc, M. Topic, D. M. F. Prazeres, V. Chu, and J. P. Conde, “Characterisation of hydrogenated silicon-carbon alloy filters with different carbon composition for on-chip fluorescence detection of biomolecules,” Sens. Actuators Phys.163(1), 96–100 (2010). [CrossRef]
  15. B. Lipovsek, A. Joskowiak, J. Krc, M. Topic, D. M. F. Prazeres, V. Chu, and J. P. Conde, “Design of spectrally selective filters in fluorescence detection of biomolecules,” presented at the 45th International Conference on Microelectronics, Devices and Materials and the Workshop on Advanced Photovoltaic Devices and Technologies, Ljubljana, (2009).
  16. C. Richard, A. Renaudin, V. Aimez, and P. G. Charette, “An integrated hybrid interference and absorption filter for fluorescence detection in lab-on-a-chip devices,” Lab Chip9(10), 1371–1376 (2009). [CrossRef] [PubMed]
  17. H. J. Levinson, Principles of Lithography, Third Edition, 3 edition. Bellingham, Wash: SPIE Press, (2011).
  18. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007). [CrossRef]
  19. C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photon.4(3), 379–440 (2012). [CrossRef]
  20. S. Mahiya, Green Fluorescent Protein: Cloning Purification and Physical Properties of Green Fluorescent Protein, Saarbrücken: LAP LAMBERT Academic Publishing, (2012).
  21. Green Fluorescent Protein (GFP).” [Online]. Available: http://www.jic.ac.uk/microscopy/more/T5_9.htm . [Accessed: 31-Jan-2014].
  22. R. Y. Tsien, “The green fluorescent protein,” Annu. Rev. Biochem.67(1), 509–544 (1998). [CrossRef] [PubMed]
  23. S. Lee, W. A. Lim, and K. S. Thorn, “Improved Blue, Green, and Red Fluorescent Protein Tagging Vectors for S. cerevisiae,” PLoS ONE8(7), e67902 (2013). [CrossRef] [PubMed]
  24. D. M. Chudakov, M. V. Matz, S. Lukyanov, and K. A. Lukyanov, “Fluorescent Proteins and Their Applications in Imaging Living Cells and Tissues,” Physiol. Rev.90(3), 1103–1163 (2010). [CrossRef] [PubMed]
  25. M. Dundr, J. G. McNally, J. Cohen, and T. Misteli, “Quantitation of GFP-fusion proteins in single living cells,” J. Struct. Biol.140(1-3), 92–99 (2002). [CrossRef] [PubMed]
  26. Fluorescence SpectraViewer.” [Online]. Available: http://www.lifetechnologies.com/si/en/home/life-science/cell-analysis/labeling-chemistry/fluorescence-spectraviewer.html?ICID=svtool&UID=EGFPpH7 . [Accessed: 31-Jan-2014].
  27. COMSOL Multiphysics®.” [Online]. Available: https://www.comsol.com/ ‎ [Accessed: 31-Jan-2014].
  28. J. Peatross and M. Ware, Physics of Light and Optics (2013).
  29. V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express18(16), 16973–16988 (2010). [CrossRef] [PubMed]
  30. V. Karagodsky and C. J. Chang-Hasnain, “Physics of near-wavelength high contrast gratings,” Opt. Express20(10), 10888–10895 (2012). [CrossRef] [PubMed]
  31. C. J. Chang-Hasnain, “High-contrast gratings as a new platform for integrated optoelectronics,” Semicond. Sci. Technol.26(1), 014043 (2011). [CrossRef]
  32. H. S. Lee and H. D. Jeong, “Chemical and mechanical balance in polishing of electronic materials for defect-free surfaces,” Cirp Ann. Manuf. Technol.58(1), 485–490 (2009). [CrossRef]
  33. D. J. Resnick, W. J. Dauksher, D. P. Mancini, K. J. Nordquist, T. C. Bailey, S. C. Johnson, N. A. Stacey, J. G. Ekerdt, C. G. Willson, S. V. Sreenivasan, and N. E. Schumaker, “Imprint lithography: lab curiosity or the real NGL,” Proc. SPIE5037, 12–23 (2003).
  34. L. J. Guo, “Nanoimprint Lithography: Methods and Material Requirements,” Adv. Mater.19(4), 495–513 (2007). [CrossRef]
  35. R. Ji, A. Krueger, M. Hornung, M. Verschuuren, R. van de Laar, and J. van Eekelen, “Full Field Nanoimprint on Mask Aligners Using Substrate Conformal Imprint Lithography Technique,” Acta Phys. Pol. A116, S187–S189 (2009).
  36. R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng.87(5–8), 963–967 (2010). [CrossRef]
  37. J.-M. Jin, The Finite Element Method in Electromagnetics, Wiley, (2002).
  38. J. Webb and V. Kanellopoulos, “Absorbing Boundary-Conditions for the Finite-Element Solution of the Vector Wave-Equation,” Microw. Opt. Technol. Lett.2(10), 370–372 (1989). [CrossRef]
  39. M. Zeman, R. van Swaaij, J. W. Metselaar, and R. E. I. Schropp, “Optical modeling of a-Si : H solar cells with rough interfaces: Effect of back contact and interface roughness,” J. Appl. Phys.88(11), 6436–6443 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited