OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 7 — Jul. 1, 2014
  • pp: 2301–2316

Non-contact small animal fluorescence imaging system for simultaneous multi-directional angular-dependent data acquisition

Jong Hwan Lee, Hyun Keol Kim, Chandhanarat Chandhanayingyong, Francis Young-In Lee, and Andreas H. Hielscher  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 7, pp. 2301-2316 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3394 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a novel non-contact small animal fluorescent molecular tomography (FMT) imaging system. At the heart of the system is a new mirror-based imaging head that was designed to provide 360-degree measurement data from an entire animal surface in one step. This imaging head consists of two conical mirrors, which considerably reduce multiple back reflections between the animal and mirror surfaces. These back reflections are common in existing mirror-based imaging heads and tend to degrade the quality of raw measurement data. In addition, the introduction of a novel ray-transfer operator allows for the inclusion of the angular dependent data in the image reconstruction process, which results in higher image resolution. We describe in detail the system design and implementation of the hardware components as well as the transport-theory-based image reconstruction algorithm. Using numerical simulations, measurements on a well-defined phantom and a live animal, we evaluate the system performance and show the advantages of our approach.

© 2014 Optical Society of America

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Small Animal Imaging and Veterinary Studies

Original Manuscript: March 25, 2014
Revised Manuscript: May 23, 2014
Manuscript Accepted: May 24, 2014
Published: June 18, 2014

Jong Hwan Lee, Hyun Keol Kim, Chandhanarat Chandhanayingyong, Francis Young-In Lee, and Andreas H. Hielscher, "Non-contact small animal fluorescence imaging system for simultaneous multi-directional angular-dependent data acquisition," Biomed. Opt. Express 5, 2301-2316 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Gulsen, O. Birgul, M. B. Unlu, R. Shafiiha, and O. Nalcioglu, “Combined diffuse optical tomography (DOT) and MRI system for cancer imaging in small animals,” Technol. Cancer Res. Treat.5(4), 351–363 (2006). [PubMed]
  2. V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–761 (2002). [CrossRef] [PubMed]
  3. M. L. Flexman, F. Vlachos, H. K. Kim, S. R. Sirsi, J. Huang, S. L. Hernandez, T. B. Johung, J. W. Gander, A. R. Reichstein, B. S. Lampl, A. Wang, M. A. Borden, D. J. Yamashiro, J. J. Kandel, and A. H. Hielscher, “Monitoring early tumor response to drug therapy with diffuse optical tomography,” J. Biomed. Opt.17(1), 016014 (2012). [CrossRef] [PubMed]
  4. E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys.30(5), 901–911 (2003). [CrossRef] [PubMed]
  5. S. V. Patwardhan, S. R. Bloch, S. Achilefu, and J. P. Culver, “Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice,” Opt. Express13(7), 2564–2577 (2005). [CrossRef] [PubMed]
  6. A. Ale, R. B. Schulz, A. Sarantopoulos, and V. Ntziachristos, “Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors,” Med. Phys.37(5), 1976–1986 (2010). [CrossRef] [PubMed]
  7. Y. Lin, W. C. Barber, J. S. Iwanczyk, W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a combined tri-modality FT/DOT/XCT system,” Opt. Express18(8), 7835–7850 (2010). [CrossRef] [PubMed]
  8. R. W. Holt, F. Leblond, and B. W. Pogue, “Toward ideal imaging geometry for recovery independence fluorescence molecular tomography,” Proc. SPIE8574, 857403 (2013). [CrossRef]
  9. N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360 ° geometry projections,” Opt. Lett.32(4), 382–384 (2007). [CrossRef] [PubMed]
  10. E. Lapointe, J. Pichette, and Y. Bérubé-Lauzière, “A multi-view time-domain non-contact diffuse optical tomography scanner with dual wavelength detection for intrinsic and fluorescence small animal imaging,” Rev. Sci. Instrum.83(6), 063703 (2012). [CrossRef] [PubMed]
  11. J. A. Guggenheim, H. R. A. Basevi, J. Frampton, I. B. Styles, and H. Dehghani, “Multi-modal molecular diffuse optical tomography system for small animal imaging,” Meas. Sci. Technol.24(10), 105405 (2013). [CrossRef]
  12. G. Wang, H. Shen, K. Durairaj, X. Qian, and W. Cong, “The first bioluminescence tomography system for simultaneous acquisition of multiview and multispectral data,” Int. J. Biomed. Imag.2006, 58601 (2006).
  13. C. Li, G. S. Mitchell, J. Dutta, S. Ahn, R. M. Leahy, and S. R. Cherry, “A three-dimensional multispectral fluorescence optical tomography imaging system for small animals based on a conical mirror design,” Opt. Express17(9), 7571–7585 (2009). [CrossRef] [PubMed]
  14. H. Gao and H. Zhao, “Multilevel bioluminescence tomography based on radiative transfer equation Part 1: l1 regularization,” Opt. Express18(3), 1854–1871 (2010). [CrossRef] [PubMed]
  15. J. S. Reynolds, T. L. Troy, and E. M. Sevick-Muraca, “Multipixel techniques for frequency-domain photon migration imaging,” Biotechnol. Prog.13(5), 669–680 (1997). [CrossRef] [PubMed]
  16. A. B. Thompson and E. M. Sevick-Muraca, “Near-infrared fluorescence contrast-enhanced imaging with intensified charge-coupled device homodyne detection: measurement precision and accuracy,” J. Biomed. Opt.8(1), 111–120 (2003). [CrossRef] [PubMed]
  17. D. Kang and M. A. Kupinski, “Noise characteristics of heterodyne/homodyne frequency-domain measurements,” J. Biomed. Opt.17(1), 015002 (2012). [CrossRef] [PubMed]
  18. U. J. Netz, J. Beuthan, and A. H. Hielscher, “Multipixel system for gigahertz frequency-domain optical imaging of finger joints,” Rev. Sci. Instrum.79(3), 034301 (2008). [CrossRef] [PubMed]
  19. M. F. Modest, Radiative Heat Transfer (Academic Press, USA, 2003).
  20. J. Jia, J. H. Lee, L. D. Montejo, H. K. Kim, and A. H. Hielscher, “Measurement operator for angular dependent photon propagation in contact-free optical tomography,” Proc. SPIE8578, 857815 (2013). [CrossRef]
  21. H. K. Kim and A. H. Hielscher, “A PDE-constrained reduced Hessian SQP method for optical tomography based on the frequency domain equation of radiative transfer,” Inv. Probl.25, 015010 (2009). [CrossRef]
  22. H. K. Kim, J. H. Lee, and A. H. Hielscher, “PDE-constrained fluorescence tomography with the frequency-domain equation of radiative transfer,” IEEE J. Sel. Top. Quantum Electron.16(4), 793–803 (2010). [CrossRef]
  23. C. Chandhanayingyong, Y. Kim, J. R. Staples, C. Hahn, and F. Y. Lee, “MAPK/ERK signaling in osteosarcomas, Ewing sarcoma and Chondrosarcomas: therapeutic implications and future directions,” Sarcoma2012, 404810 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited