OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 7 — Jul. 1, 2014
  • pp: 2341–2348

Controlled 3D rotation of biological cells using optical multiple-force clamps

Yoshio Tanaka and Shin-ich Wakida  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 7, pp. 2341-2348 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1912 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Controlled three-dimensional (3D) rotation of arbitrarily shaped objects in the observation space of optical microscopes is essential for realizing tomographic microscope imaging and offers great flexibility as a noncontact micromanipulation tool for biomedical applications. Herein, we present 3D rotational control of inhomogeneous biological samples using 3D optical multiple-force clamps based on time-shared scanning with a fast focus-tunable lens. For inhomogeneous samples with shape and optical anisotropy, we choose diatoms and their fragments, and demonstrate interactive and controlled 3D rotation about arbitrary axes in 3D Cartesian coordinates. We also outline the hardware setup and 3D rotation method for our demonstrations.

© 2014 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Traps, Manipulation, and Tracking

Original Manuscript: April 30, 2014
Revised Manuscript: June 9, 2014
Manuscript Accepted: June 13, 2014
Published: June 18, 2014

Yoshio Tanaka and Shin-ich Wakida, "Controlled 3D rotation of biological cells using optical multiple-force clamps," Biomed. Opt. Express 5, 2341-2348 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Palima and J. Glückstad, “Gearing up for optical microrobotics: micromanipulation and actuation of synthetic microstructures by optical forces,” Laser Photonics Rev.7(4), 478–494 (2013). [CrossRef]
  2. Y. Tanaka, H. Kawada, K. Hirano, M. Ishikawa, and H. Kitajima, “Automated manipulation of non-spherical micro-objects using optical tweezers combined with image processing techniques,” Opt. Express16(19), 15115–15122 (2008). [CrossRef] [PubMed]
  3. D. B. Phillips, S. H. Simpson, J. A. Grieve, G. M. Gibson, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Position clamping of optically trapped microscopic non-spherical probes,” Opt. Express19(21), 20622–20627 (2011). [CrossRef] [PubMed]
  4. M. K. Kreysing, T. Kiessling, A. Fritsch, C. Dietrich, J. R. Guck, and J. A. Käs, “The optical cell rotator,” Opt. Express16(21), 16984–16992 (2008). [CrossRef] [PubMed]
  5. G. Carmon and M. Feingold, “Rotation of single bacterial cells relative to the optical axis using optical tweezers,” Opt. Lett.36(1), 40–42 (2011). [CrossRef] [PubMed]
  6. Y. Tanaka, K. Hirano, H. Nagata, and M. Ishikawa, “Real-time three-dimensional orientation control of non-spherical micro-objects using laser trapping,” Electron. Lett.43(7), 412–414 (2007). [CrossRef]
  7. F. Hörner, M. Woerdemann, S. Müller, B. Maier, and C. Denz, “Full 3D translational and rotational optical control of multiple rod-shaped bacteria,” J. Biophotonics3(7), 468–475 (2010). [CrossRef] [PubMed]
  8. J. Swoger, P. Verveer, K. Greger, J. Huisken, and E. H. K. Stelzer, “Multi-view image fusion improves resolution in three-dimensional microscopy,” Opt. Express15(13), 8029–8042 (2007). [CrossRef] [PubMed]
  9. P. J. Shaw, D. A. Agard, Y. Hiraoka, and J. W. Sedat, “Tilted view reconstruction in optical microscopy. Three-dimensional reconstruction of Drosophila melanogaster embryo nuclei,” Biophys. J.55(1), 101–110 (1989). [CrossRef] [PubMed]
  10. M. Fauver, E. J. Seibel, J. R. Rahn, M. G. Meyer, F. W. Patten, T. Neumann, and A. C. Nelson, “Three-dimensional imaging of single isolated cell nuclei using optical projection tomography,” Opt. Express13(11), 4210–4223 (2005). [CrossRef] [PubMed]
  11. D. Palima, A. R. Bañas, G. Vizsnyiczai, L. Kelemen, P. Ormos, and J. Glückstad, “Wave-guided optical waveguides,” Opt. Express20(3), 2004–2014 (2012). [CrossRef] [PubMed]
  12. S. Tauro, A. Bañas, D. Palima, and J. Glückstad, “Dynamic axial stabilization of counter-propagating beam-traps with feedback control,” Opt. Express18(17), 18217–18222 (2010). [CrossRef] [PubMed]
  13. V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett.82(5), 829–831 (2003). [CrossRef]
  14. Y. Tanaka, H. Kawada, S. Tsutsui, M. Ishikawa, and H. Kitajima, “Dynamic micro-bead arrays using optical tweezers combined with intelligent control techniques,” Opt. Express17(26), 24102–24111 (2009). [CrossRef] [PubMed]
  15. P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, E. J. Nijhof, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J.69(5), 1666–1673 (1995). [CrossRef] [PubMed]
  16. Y. Tanaka, “3D multiple optical tweezers based on time-shared scanning with a fast focus tunable lens,” J. Opt.15(2), 025708 (2013). [CrossRef]
  17. Y. A. Hicks, D. Marshall, P. L. Rosin, R. R. Martin, D. G. Mann, and S. J. M. Droop, “A model of diatom shape and texture for analysis, synthesis and identification,” Mach. Vis. Appl.17(5), 297–307 (2006). [CrossRef]
  18. F. O. Fahrbach, F. F. Voigt, B. Schmid, F. Helmchen, and J. Huisken, “Rapid 3D light-sheet microscopy with a tunable lens,” Opt. Express21(18), 21010–21026 (2013). [CrossRef] [PubMed]
  19. H. Oku, M. Ishikawa, T. Theodorus, and K. Hashimoto, “High-speed autofocusing of a cell using diffraction patterns,” Opt. Express14(9), 3952–3960 (2006). [CrossRef]
  20. D. B. Phillips, G. M. Gibson, R. Bowman, M. J. Padgett, S. Hanna, D. M. Carberry, M. J. Miles, and S. H. Simpson, “An optically actuated surface scanning probe,” Opt. Express20(28), 29679–29693 (2012). [CrossRef] [PubMed]
  21. X. Trepat, L. Deng, S. S. An, D. Navajas, D. J. Tschumperlin, W. T. Gerthoffer, J. P. Butler, and J. J. Fredberg, “Universal physical responses to stretch in the living cell,” Nature447(7144), 592–595 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

Supplementary Material

» Media 1: MOV (3331 KB)     
» Media 2: MOV (4166 KB)     
» Media 3: MOV (2316 KB)     
» Media 4: MOV (722 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited