OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 7 — Jul. 1, 2014
  • pp: 2349–2361

Magnetomotive optical coherence elastography using magnetic particles to induce mechanical waves

Adeel Ahmad, Jongsik Kim, Nahil A. Sobh, Nathan D. Shemonski, and Stephen A. Boppart  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 7, pp. 2349-2361 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2691 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Magnetic particles are versatile imaging agents that have found wide spread applicability in diagnostic, therapeutic, and rheology applications. In this study, we demonstrate that mechanical waves generated by a localized inclusion of magnetic nanoparticles can be used for assessment of the tissue viscoelastic properties using magnetomotive optical coherence elastography. We show these capabilities in tissue mimicking elastic and viscoelastic phantoms and in biological tissues by measuring the shear wave speed under magnetomotive excitation. Furthermore, we demonstrate the extraction of the complex shear modulus by measuring the shear wave speed at different frequencies and fitting to a Kelvin-Voigt model.

© 2014 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(260.2110) Physical optics : Electromagnetic optics
(350.0350) Other areas of optics : Other areas of optics
(350.5030) Other areas of optics : Phase
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Optical Coherence Tomography

Original Manuscript: May 9, 2014
Revised Manuscript: June 9, 2014
Manuscript Accepted: June 11, 2014
Published: June 18, 2014

Adeel Ahmad, Jongsik Kim, Nahil A. Sobh, Nathan D. Shemonski, and Stephen A. Boppart, "Magnetomotive optical coherence elastography using magnetic particles to induce mechanical waves," Biomed. Opt. Express 5, 2349-2361 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Med. Biol.56(1), R1–R29 (2011). [CrossRef] [PubMed]
  2. J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng.5(1), 57–78 (2003). [CrossRef] [PubMed]
  3. B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A review of optical coherence elastography: fundamentals, techniques and prospects,” IEEE J. Sel. Top. Quantum Electron.20(2), 272–288 (2014). [CrossRef]
  4. K. M. Kennedy, B. F. Kennedy, R. A. McLaughlin, and D. D. Sampson, “Needle optical coherence elastography for tissue boundary detection,” Opt. Lett.37(12), 2310–2312 (2012). [CrossRef] [PubMed]
  5. S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express14(24), 11585–11597 (2006). [CrossRef] [PubMed]
  6. X. Liang, V. Crecea, and S. A. Boppart, “Dynamic optical coherence elastography: a review,” J. Innov. Opt. Health Sci.3(4), 221–233 (2010). [CrossRef] [PubMed]
  7. R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science269(5232), 1854–1857 (1995). [CrossRef] [PubMed]
  8. V. Dutt, R. R. Kinnick, R. Muthupillai, T. E. Oliphant, R. L. Ehman, and J. F. Greenleaf, “Acoustic shear-wave imaging using echo ultrasound compared to magnetic resonance elastography,” Ultrasound Med. Biol.26(3), 397–403 (2000). [CrossRef] [PubMed]
  9. Q. C. C. Chan, G. Li, R. L. Ehman, R. C. Grimm, R. Li, and E. S. Yang, “Needle shear wave driver for magnetic resonance elastography,” Magn. Reson. Med.55(5), 1175–1179 (2006). [CrossRef] [PubMed]
  10. M. Orescanin and M. Insana, “Shear modulus estimation with vibrating needle stimulation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control57(6), 1358–1367 (2010). [CrossRef] [PubMed]
  11. K. Nightingale, “Acoustic radiation force impulse (ARFI) imaging: a review,” Curr. Med. Imaging Rev.7(4), 328–339 (2011). [CrossRef] [PubMed]
  12. X. Liang and S. A. Boppart, “Biomechanical properties of in vivo human skin from dynamic optical coherence elastography,” IEEE Trans. Biomed. Eng.57(4), 953–959 (2010). [CrossRef] [PubMed]
  13. R. Manapuram, S. Aglyamov, F. M. Menodiado, M. Mashiatulla, S. Wang, S. A. Baranov, J. Li, S. Emelianov, and K. V. Larin, “Estimation of shear wave velocity in gelatin phantoms utilizing PhS-SSOCT,” Laser Phys.22(9), 1439–1444 (2012). [CrossRef]
  14. C. Li, G. Guan, X. Cheng, Z. Huang, and R. K. Wang, “Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography,” Opt. Lett.37(4), 722–724 (2012). [CrossRef] [PubMed]
  15. S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: motion artifact and its compensation,” J. Biomed. Opt.18(12), 121505 (2013). [CrossRef] [PubMed]
  16. M. Razani, A. Mariampillai, C. Sun, T. W. H. Luk, V. X. D. Yang, and M. C. Kolios, “Feasibility of optical coherence elastography measurements of shear wave propagation in homogeneous tissue equivalent phantoms,” Biomed. Opt. Express3(5), 972–980 (2012). [CrossRef] [PubMed]
  17. W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt.17(11), 110505 (2012). [CrossRef] [PubMed]
  18. T.-M. Nguyen, S. Song, B. Arnal, Z. Huang, M. O’Donnell, and R. K. Wang, “Visualizing ultrasonically induced shear wave propagation using phase-sensitive optical coherence tomography for dynamic elastography,” Opt. Lett.39(4), 838–841 (2014). [CrossRef] [PubMed]
  19. M. Razani, T. W. H. Luk, A. Mariampillai, P. Siegler, T.-R. Kiehl, M. C. Kolios, and V. X. D. Yang, “Optical coherence tomography detection of shear wave propagation in inhomogeneous tissue equivalent phantoms and ex-vivo carotid artery samples,” Biomed. Opt. Express5(3), 895–906 (2014). [CrossRef] [PubMed]
  20. X. Liang, M. Orescanin, K. S. Toohey, M. F. Insana, and S. A. Boppart, “Acoustomotive optical coherence elastography for measuring material mechanical properties,” Opt. Lett.34(19), 2894–2896 (2009). [CrossRef] [PubMed]
  21. S. Wang, J. Li, R. K. Manapuram, F. M. Menodiado, D. R. Ingram, M. D. Twa, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system,” Opt. Lett.37(24), 5184–5186 (2012). [CrossRef] [PubMed]
  22. C. Li, G. Guan, F. Zhang, G. Nabi, R. K. Wang, and Z. Huang, “Laser induced surface acoustic wave combined with phase sensitive optical coherence tomography for superficial tissue characterization: a solution for practical application,” Biomed. Opt. Express5(5), 1403–1419 (2014). [CrossRef] [PubMed]
  23. K. M. Krishnan, “Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy,” IEEE Trans. Magn.46(7), 2523–2558 (2010). [CrossRef] [PubMed]
  24. C. Wilhelm and F. Gazeau, “Magnetic nanoparticles: Internal probes and heaters within living cells,” J. Magn. Magn. Mater.321(7), 671–674 (2009). [CrossRef]
  25. V. Crecea, B. W. Graf, T. Kim, G. Popescu, and S. A. Boppart, “High resolution phase-sensitive magnetomotive optical coherence microscopy for tracking magnetic microbeads and cellular mechanics,” IEEE J. Sel. Top. Quantum Electron.20(2), 25–31 (2014). [CrossRef]
  26. A. L. Oldenburg, F. J.-J. Toublan, K. S. Suslick, A. Wei, and S. A. Boppart, “Magnetomotive contrast for in vivo optical coherence tomography,” Opt. Express13(17), 6597–6614 (2005). [CrossRef] [PubMed]
  27. R. John, R. Rezaeipoor, S. G. Adie, E. J. Chaney, A. L. Oldenburg, M. Marjanovic, J. P. Haldar, B. P. Sutton, and S. A. Boppart, “In vivo magnetomotive optical molecular imaging using targeted magnetic nanoprobes,” Proc. Natl. Acad. Sci. U.S.A.107(18), 8085–8090 (2010). [CrossRef] [PubMed]
  28. J. Kim, A. Ahmad, M. Marjanovic, E. J. Chaney, J. Li, J. Rasio, Z. Hubler, D. Spillman, K. S. Suslick, and S. A. Boppart, “Magnetomotive optical coherence tomography for the assessment of atherosclerotic lesions using αvβ3 integrin-targeted microspheres,” Mol. Imaging Biol.16(1), 36–43 (2014). [CrossRef] [PubMed]
  29. J. Koo, C. Lee, H. W. Kang, Y. W. Lee, J. Kim, and J. Oh, “Pulsed magneto-motive optical coherence tomography for remote cellular imaging,” Opt. Lett.37(17), 3714–3716 (2012). [CrossRef] [PubMed]
  30. V. Crecea, A. Ahmad, and S. A. Boppart, “Magnetomotive optical coherence elastography for microrheology of biological tissues,” J. Biomed. Opt.18(12), 121504 (2013). [CrossRef] [PubMed]
  31. V. Crecea, A. L. Oldenburg, X. Liang, T. S. Ralston, and S. A. Boppart, “Magnetomotive nanoparticle transducers for optical rheology of viscoelastic materials,” Opt. Express17(25), 23114–23122 (2009). [CrossRef] [PubMed]
  32. A. L. Oldenburg and S. A. Boppart, “Resonant acoustic spectroscopy of soft tissues using embedded magnetomotive nanotransducers and optical coherence tomography,” Phys. Med. Biol.55(4), 1189–1201 (2010). [CrossRef] [PubMed]
  33. S. Song, Z. Huang, T.-M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Shear modulus imaging by direct visualization of propagating shear waves with phase-sensitive optical coherence tomography,” J. Biomed. Opt.18(12), 121509 (2013). [CrossRef] [PubMed]
  34. T. Deffieux, G. Montaldo, M. Tanter, and M. Fink, “Shear wave spectroscopy for in vivo quantification of human soft tissues visco-elasticity,” IEEE Trans. Med. Imaging28(3), 313–322 (2009). [CrossRef] [PubMed]
  35. S. Chen, M. Fatemi, and J. F. Greenleaf, “Quantifying elasticity and viscosity from measurement of shear wave speed dispersion,” J. Acoust. Soc. Am.115(6), 2781–2785 (2004). [CrossRef] [PubMed]
  36. A. L. Oldenburg, V. Crecea, S. A. Rinne, and S. A. Boppart, “Phase-resolved magnetomotive OCT for imaging nanomolar concentrations of magnetic nanoparticles in tissues,” Opt. Express16(15), 11525–11539 (2008). [PubMed]
  37. Y. Zheng, S. Chen, W. Tan, R. Kinnick, and J. F. Greenleaf, “Detection of tissue harmonic motion induced by ultrasonic radiation force using pulse-echo ultrasound and Kalman filter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(2), 290–300 (2007). [CrossRef] [PubMed]
  38. S. Chen, M. W. Urban, C. Pislaru, R. Kinnick, Y. Zheng, A. Yao, and J. F. Greenleaf, “Shearwave dispersion ultrasound vibrometry (SDUV) for measuring tissue elasticity and viscosity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control56(1), 55–62 (2009). [CrossRef] [PubMed]
  39. Y. Yamakoshi, J. Sato, and T. Sato, “Ultrasonic imaging of internal vibration of soft tissue under forced vibration,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control37(2), 45–53 (1990). [CrossRef] [PubMed]
  40. M. Benkherourou, C. Rochas, P. Tracqui, L. Tranqui, and P. Y. Guméry, “Standardization of a method for characterizing low-concentration biogels: elastic properties of low-concentration agarose gels,” J. Biomech. Eng.121(2), 184–187 (1999). [CrossRef] [PubMed]
  41. M. M. Nguyen, S. Zhou, J. L. Robert, V. Shamdasani, and H. Xie, “Development of oil-in-gelatin phantoms for viscoelasticity measurement in ultrasound shear wave elastography,” Ultrasound Med. Biol.40(1), 168–176 (2014). [CrossRef] [PubMed]
  42. E. L. Madsen, J. A. Zagzebski, and G. R. Frank, “Oil-in-gelatin dispersions for use as ultrasonically tissue-mimicking materials,” Ultrasound Med. Biol.8(3), 277–287 (1982). [CrossRef] [PubMed]
  43. J. Bercoff, M. Tanter, M. Muller, and M. Fink, “The role of viscosity in the impulse diffraction field of elastic waves induced by the acoustic radiation force,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control51(11), 1523–1536 (2004). [CrossRef] [PubMed]
  44. S. Catheline, F. Wu, and M. Fink, “A solution to diffraction biases in sonoelasticity: The acoustic impulse technique,” J. Acoust. Soc. Am.105(5), 2941–2950 (1999). [CrossRef] [PubMed]
  45. K. Chen, A. Yao, E. E. Zheng, J. Lin, and Y. Zheng, “Shear wave dispersion ultrasound vibrometry based on a different mechanical model for soft tissue characterization,” J. Ultrasound Med.31(12), 2001–2011 (2012). [PubMed]
  46. Y. Wang and M. F. Insana, “Viscoelastic properties of rodent mammary tumors using ultrasonic shear-wave imaging,” Ultrason. Imaging35(2), 126–145 (2013). [CrossRef] [PubMed]
  47. T. Deffieux, J. L. Gennisson, J. Bercoff, and M. Tanter, “On the effects of reflected waves in transient shear wave elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control58(10), 2032–2035 (2011). [CrossRef] [PubMed]
  48. J. Bercoff, S. Chaffai, M. Tanter, L. Sandrin, S. Catheline, M. Fink, J. L. Gennisson, and M. Meunier, “In vivo breast tumor detection using transient elastography,” Ultrasound Med. Biol.29(10), 1387–1396 (2003). [CrossRef] [PubMed]
  49. M. W. Urban, S. Chen, and J. F. Greenleaf, “Error in estimates of tissue material properties from shear wave dispersion ultrasound vibrometry,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control56(4), 748–758 (2009). [CrossRef] [PubMed]
  50. A. Grimwood, L. Garcia, J. Bamber, J. Holmes, P. Woolliams, P. Tomlins, and Q. A. Pankhurst, “Elastographic contrast generation in optical coherence tomography from a localized shear stress,” Phys. Med. Biol.55(18), 5515–5528 (2010). [CrossRef] [PubMed]
  51. S. Catheline, J. L. Gennisson, and M. Fink, “Measurement of elastic nonlinearity of soft solid with transient elastography,” J. Acoust. Soc. Am.114(6), 3087–3091 (2003). [CrossRef] [PubMed]
  52. J. L. Gennisson, S. Catheline, S. Chaffaï, and M. Fink, “Transient elastography in anisotropic medium: application to the measurement of slow and fast shear wave speeds in muscles,” J. Acoust. Soc. Am.114(1), 536–541 (2003). [CrossRef] [PubMed]
  53. M. Evertsson, M. Cinthio, S. Fredriksson, F. Olsson, H. W. Persson, and T. Jansson, “Frequency- and phase-sensitive magnetomotive ultrasound imaging of superparamagnetic iron oxide nanoparticles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control60(3), 481–491 (2013). [CrossRef] [PubMed]
  54. V. I. Shubayev, T. R. Pisanic, and S. Jin, “Magnetic nanoparticles for theragnostics,” Adv. Drug Deliv. Rev.61(6), 467–477 (2009). [CrossRef] [PubMed]
  55. J. Vappou, C. Maleke, and E. E. Konofagou, “Quantitative viscoelastic parameters measured by harmonic motion imaging,” Phys. Med. Biol.54(11), 3579–3594 (2009). [CrossRef] [PubMed]
  56. R. W. Chan and M. L. Rodriguez, “A simple-shear rheometer for linear viscoelastic characterization of vocal fold tissues at phonatory frequencies,” J. Acoust. Soc. Am.124(2), 1207–1219 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (9264 KB)     
» Media 2: AVI (8949 KB)     
» Media 3: AVI (6485 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited