OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 7 — Jul. 1, 2014
  • pp: 2362–2375

Quantifying tissue mechanical properties using photoplethysmography

Tony J. Akl, Mark A. Wilson, M. Nance Ericson, and Gerard L. Coté  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 7, pp. 2362-2375 (2014)
http://dx.doi.org/10.1364/BOE.5.002362


View Full Text Article

Enhanced HTML    Acrobat PDF (1736 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photoplethysmography (PPG) is a non-invasive optical method that can be used to detect blood volume changes in the microvascular bed of tissue. The PPG signal comprises two components; a pulsatile waveform (AC) attributed to changes in the interrogated blood volume with each heartbeat, and a slowly varying baseline (DC) combining low frequency fluctuations mainly due to respiration and sympathetic nervous system activity. In this report, we investigate the AC pulsatile waveform of the PPG pulse for ultimate use in extracting information regarding the biomechanical properties of tissue and vasculature. By analyzing the rise time of the pulse in the diastole period, we show that PPG is capable of measuring changes in the Young’s Modulus of tissue mimicking phantoms with a resolution of 4 KPa in the range of 12 to 61 KPa. In addition, the shape of the pulse can potentially be used to diagnose vascular complications by differentiating upstream from downstream complications. A Windkessel model was used to model changes in the biomechanical properties of the circulation and to test the proposed concept. The modeling data confirmed the response seen in vitro and showed the same trends in the PPG rise and fall times with changes in compliance and vascular resistance.

© 2014 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(280.1415) Remote sensing and sensors : Biological sensing and sensors

ToC Category:
Optics of Tissue and Turbid Media

History
Original Manuscript: April 1, 2014
Revised Manuscript: May 23, 2014
Manuscript Accepted: June 16, 2014
Published: June 19, 2014

Citation
Tony J. Akl, Mark A. Wilson, M. Nance Ericson, and Gerard L. Coté, "Quantifying tissue mechanical properties using photoplethysmography," Biomed. Opt. Express 5, 2362-2375 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-7-2362


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Allen, “Photoplethysmography and its application in clinical physiological measurement,” Physiol. Meas.28(3), R1–R39 (2007). [CrossRef] [PubMed]
  2. G. Cennini, J. Arguel, K. Akşit, and A. van Leest, “Heart rate monitoring via remote photoplethysmography with motion artifacts reduction,” Opt. Express18(5), 4867–4875 (2010). [CrossRef] [PubMed]
  3. W. Verkruysse, L. O. Svaasand, and J. S. Nelson, “Remote plethysmographic imaging using ambient light,” Opt. Express16(26), 21434–21445 (2008). [CrossRef] [PubMed]
  4. A. A. Kamshilin, V. Teplov, E. Nippolainen, S. Miridonov, and R. Giniatullin, “Variability of microcirculation detected by blood pulsation imaging,” PLoS ONE8(2), e57117 (2013). [CrossRef] [PubMed]
  5. M. Sandberg, Q. Zhang, J. Styf, B. Gerdle, and L. G. Lindberg, “Non-invasive monitoring of muscle blood perfusion by photoplethysmography: evaluation of a new application,” Acta Physiol. Scand.183(4), 335–343 (2005). [CrossRef] [PubMed]
  6. T. Aoyagi, “Pulse oximetry: its invention, theory, and future,” J. Anesth.17(4), 259–266 (2003). [CrossRef] [PubMed]
  7. V. Kamat, “Pulse oximetry,” Indian J. Anaesth46, 261–268 (2002).
  8. T. R. Dawber, H. E. Thomas, and P. M. McNamara, “Characteristics of the dicrotic notch of the arterial pulse wave in coronary heart disease,” Angiology24(4), 244–255 (1973). [CrossRef] [PubMed]
  9. S. C. Millasseau, J. M. Ritter, K. Takazawa, and P. J. Chowienczyk, “Contour analysis of the photoplethysmographic pulse measured at the finger,” J. Hypertens.24(8), 1449–1456 (2006). [CrossRef] [PubMed]
  10. K. Meigas, R. Kattai, and J. Lass, “Continuous blood pressure monitoring using pulse wave delay,” Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1–423, 3171–3174 (2001). [CrossRef]
  11. E. Zahedi, K. Chellappan, M. A. Ali, and H. Singh, “Analysis of the effect of ageing on rising edge characteristics of the photoplethysmogram using a modified Windkessel model,” Cardiovasc. Eng.7(4), 172–181 (2007). [CrossRef] [PubMed]
  12. S. C. Millasseau, R. P. Kelly, J. M. Ritter, and P. J. Chowienczyk, “Determination of age-related increases in large artery stiffness by digital pulse contour analysis,” Clin. Sci.103(4), 371–377 (2002). [PubMed]
  13. A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Med. Image Anal.5(4), 237–254 (2001). [CrossRef] [PubMed]
  14. M. Hirata, S. M. F. Akbar, N. Horiike, and M. Onji, “Noninvasive diagnosis of the degree of hepatic fibrosis using ultrasonography in patients with chronic liver disease due to hepatitis C virus,” Eur. J. Clin. Invest.31(6), 528–535 (2001). [CrossRef] [PubMed]
  15. B. Hinz, “Tissue stiffness, latent TGF-beta1 activation, and mechanical signal transduction: implications for the pathogenesis and treatment of fibrosis,” Curr. Rheumatol. Rep.11(2), 120–126 (2009). [CrossRef] [PubMed]
  16. S. P. Glasser, D. K. Arnett, G. E. McVeigh, S. M. Finkelstein, A. J. Bank, D. J. Morgan, and J. N. Cohn, “Vascular compliance and cardiovascular disease: a risk factor or a marker?” Am. J. Hypertens.10(10), 1175–1189 (1997). [CrossRef] [PubMed]
  17. J. A. Clark, J. C. Cheng, and K. S. Leung, “Mechanical properties of normal skin and hypertrophic scars,” Burns22(6), 443–446 (1996). [CrossRef] [PubMed]
  18. Organ Procurement and Transplantation Network (OPTN) and Scientific Registry of Transplant Recipients, (SRTR). OPTN / SRTR 2011 Annual Data Report. Rockville, MD: Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, Division of Transplantation; 2012.
  19. J. Quiroga, I. Colina, A. J. Demetris, T. E. Starzl, and D. H. Van Thiel, “Cause and timing of first allograft failure in orthotopic liver transplantation: a study of 177 consecutive patients,” Hepatology14(6), 1054–1062 (1991). [CrossRef] [PubMed]
  20. B. Eghtesad, C. M. Miller, and J. J. Fung, “Post-liver transplantation management,” in Cleveland Clinic:Current Clinical Medicine, 2ed., W. D. Carey, eds. (Elsevier Saunders, Philadelphia, 2009), pp. 564–570.
  21. P. E. Hickman, J. M. Potter, and A. J. Pesce, “Clinical chemistry and post-liver-transplant monitoring,” Clin. Chem.43(8 Pt 2), 1546–1554 (1997). [PubMed]
  22. T. J. Akl, R. Long, M. J. McShane, M. N. Ericson, M. A. Wilson, and G. L. Coté, “Optimizing probe design for an implantable perfusion and oxygenation sensor,” Biomed. Opt. Express2(8), 2096–2109 (2011). [CrossRef] [PubMed]
  23. M. N. Ericson, M. Wilson, G. Cote, C. L. Britton, W. Xu, J. Baba, M. Bobrek, M. Hileman, M. Moore, and S. Frank, “Development of an implantable oximetry-based organ perfusion sensor,” Conf. Proc. IEEE Eng. Med. Biol. Soc.3, 2235–2238 (2004). [PubMed]
  24. M. N. Ericson, M. A. Wilson, G. L. Coté, J. S. Baba, W. Xu, M. Bobrek, C. L. Britton, M. S. Hileman, M. R. Moore, M. S. Emery, and R. Lenarduzzi, “Implantable sensor for blood flow monitoring after transplant surgery,” Minim. Invasive Ther. Allied Technol.13(2), 87–94 (2004). [CrossRef] [PubMed]
  25. M. Ericson, S. Frank, C. Britton, J. Baba, S. Lee, T. McKnight, M. Bobrek, E. Farquhar, T. Akl, and G. Cote, “A custom electronics platform for implantable perfusion sensor development,” Future of Instrumentation International Workshop (FIIW), 63–66 (2011). [CrossRef]
  26. P. Thampanitchawong and T. Piratvisuth, “Liver biopsy:complications and risk factors,” World J. Gastroenterol.5(4), 301–304 (1999). [PubMed]
  27. B. Terjung, I. Lemnitzer, F. L. Dumoulin, W. Effenberger, H. H. Brackmann, T. Sauerbruch, and U. Spengler, “Bleeding complications after percutaneous liver biopsy. An analysis of risk factors,” Digestion67(3), 138–145 (2003). [CrossRef] [PubMed]
  28. R. Bataller and D. A. Brenner, “Liver fibrosis,” J. Clin. Invest.115(2), 209–218 (2005). [CrossRef] [PubMed]
  29. P. Zakharov, M. S. Talary, and A. Caduff, “A wearable diffuse reflectance sensor for continuous monitoring of cutaneous blood content,” Phys. Med. Biol.54(17), 5301–5320 (2009). [CrossRef] [PubMed]
  30. F. P. Wieringa, F. Mastik, and A. F. van der Steen, “Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO2 camera” technology,” Ann. Biomed. Eng.33(8), 1034–1041 (2005). [CrossRef] [PubMed]
  31. N. Stergiopulos, B. E. Westerhof, J. J. Meister, and N. Westerhof, “The four-element windkessel model,” Proceedings of the 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol 18, Pts 1–5 18, 1715–1716 (1997).
  32. N. Westerhof, J. W. Lankhaar, and B. E. Westerhof, “The arterial Windkessel,” Med. Biol. Eng. Comput.47(2), 131–141 (2009). [CrossRef] [PubMed]
  33. R. Sahni, “Noninvasive monitoring by photoplethysmography,” Clin. Perinatol.39(3), 573–583 (2012). [CrossRef] [PubMed]
  34. L. Bernardi and S. Leuzzi, “Laser Doppler flowmetry and Photoplethysmography: basic principles and hardware,” in Bioengineering of the Skin: Cutaneous Blood Flow and Erythema, E. Berardesca, P. Elsner, and H. I. Maibach, eds. (CRC Press, 1995).
  35. R. Long, T. King, T. Akl, M. N. Ericson, M. Wilson, G. L. Coté, and M. J. McShane, “Optofluidic phantom mimicking optical properties of porcine livers,” Biomed. Opt. Express2(7), 1877–1892 (2011). [CrossRef] [PubMed]
  36. H. C. Hong, C. M. Chen, Y. C. Chou, and C. H. Lin, “Study of novel electrical routing and integrated packaging on bio-compatible flexible substrates,” Microsyst. Technol.16(3), 423–430 (2010). [CrossRef]
  37. M. Stevanov, J. Baruthio, and B. Eclancher, “Fabrication of elastomer arterial models with specified compliance,” J. Appl. Physiol.88(4), 1291–1294 (2000). [PubMed]
  38. T. J. Akl, T. J. King, R. Long, M. J. McShane, M. Nance Ericson, M. A. Wilson, and G. L. Coté, “Performance assessment of an opto-fluidic phantom mimicking porcine liver parenchyma,” J. Biomed. Opt.17(7), 077008 (2012). [CrossRef] [PubMed]
  39. N. H. Ballal, “Mathematical modeling of arterial blood flow using Windkessel model,” Sudan Medical Monitor (SMM) 6(2011).
  40. M. Ziol, A. Handra-Luca, A. Kettaneh, C. Christidis, F. Mal, F. Kazemi, V. de Lédinghen, P. Marcellin, D. Dhumeaux, J.-C. Trinchet, and M. Beaugrand, “Noninvasive assessment of liver fibrosis by measurement of stiffness in patients with chronic hepatitis C,” Hepatology41(1), 48–54 (2005). [CrossRef] [PubMed]
  41. R. G. Gosling and M. M. Budge, “Terminology for describing the elastic behavior of arteries,” Hypertension41(6), 1180–1182 (2003). [CrossRef] [PubMed]
  42. D. S. Baim and W. Grossman, Grossman's Cardiac Catheterization, Angiography, and Intervention, 7th ed. (Lippincott Williams & Wilkins, Philadelphia, 2006).
  43. C. J. Bruns, D. Neuhof, H. Erasmi, and T. Schmitz-Rixen, “In vivo biomechanical properties of three different graft materials in peripheral vascular surgery,” Int. J. Angiol.7(1), 52–56 (1998). [CrossRef]
  44. M. Umut Ozcan, S. Ocal, C. Basdogan, G. Dogusoy, and Y. Tokat, “Characterization of frequency-dependent material properties of human liver and its pathologies using an impact hammer,” Med. Image Anal.15(1), 45–52 (2011). [CrossRef] [PubMed]
  45. P. J. Wang, W. C. Li, G. M. Xi, H. Q. Wang, Z. H. Zhang, B. C. Yao, W. Tang, Z. H. Deng, and X. H. Zhang, “Biomechanical study of hepatic portal vein in humans and pigs and its value in liver transplantation,” Transplant. Proc.41(5), 1906–1910 (2009). [CrossRef] [PubMed]
  46. P. J. Wang, F. He, D. H. Liao, J. Zhang, W. C. Li, Y. F. Zhang, T. Z. Huang, X. Y. Li, and Y. J. Zeng, “The impact of age on incremental elastic modulus and incremental compliance of pig hepatic portal vein for liver xenotransplantation,” Xenotransplantation16(1), 5–10 (2009). [CrossRef] [PubMed]
  47. G. Varotti, G. L. Grazi, G. Vetrone, G. Ercolani, M. Cescon, M. Del Gaudio, M. Ravaioli, A. Cavallari, and A. Pinna, “Causes of early acute graft failure after liver transplantation: analysis of a 17-year single-centre experience,” Clin. Transplant.19(4), 492–500 (2005). [CrossRef] [PubMed]
  48. U. Settmacher, B. Stange, R. Haase, M. Heise, T. Steinmüller, W. O. Bechstein, and P. Neuhaus, “Arterial complications after liver transplantation,” Transpl. Int.13(5), 372–378 (2000). [CrossRef] [PubMed]
  49. E. L. Carstensen, K. J. Parker, and R. M. Lerner, “Elastography in the management of liver disease,” Ultrasound Med. Biol.34(10), 1535–1546 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited