OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 7 — Jul. 1, 2014
  • pp: 2397–2404

Noninvasive in vivo glucose sensing on human subjects using mid-infrared light

Sabbir Liakat, Kevin A. Bors, Laura Xu, Callie M. Woods, Jessica Doyle, and Claire F. Gmachl  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 7, pp. 2397-2404 (2014)
http://dx.doi.org/10.1364/BOE.5.002397


View Full Text Article

Enhanced HTML    Acrobat PDF (1744 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Mid-infrared quantum cascade laser spectroscopy is used to noninvasively predict blood glucose concentrations of three healthy human subjects in vivo. We utilize a hollow-core fiber based optical setup for light delivery and collection along with a broadly tunable quantum cascade laser to obtain spectra from human subjects and use standard chemo-metric techniques (namely partial least squares regression) for prediction analysis. Throughout a glucose concentration range of 80-160 mg/dL, we achieve clinically accurate predictions 84% of the time, on average. This work opens a new path to a noninvasive in vivo glucose sensor that would benefit the lives of hundreds of millions of diabetics worldwide.

© 2014 Optical Society of America

OCIS Codes
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(300.6340) Spectroscopy : Spectroscopy, infrared
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Noninvasive Optical Diagnostics

History
Original Manuscript: April 1, 2014
Revised Manuscript: May 31, 2014
Manuscript Accepted: June 16, 2014
Published: June 23, 2014

Citation
Sabbir Liakat, Kevin A. Bors, Laura Xu, Callie M. Woods, Jessica Doyle, and Claire F. Gmachl, "Noninvasive in vivo glucose sensing on human subjects using mid-infrared light," Biomed. Opt. Express 5, 2397-2404 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-7-2397


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Danaei, M. M. Finucane, Y. Lu, G. M. Singh, M. J. Cowan, C. J. Paciorek, J. K. Lin, F. Farzadfar, Y. H. Khang, G. A. Stevens, M. Rao, M. K. Ali, L. M. Riley, C. A. Robinson, M. Ezzati, and Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Blood Glucose), “National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants,” Lancet378(9785), 31–40 (2011). [CrossRef] [PubMed]
  2. V. Tuchin, Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues (CRC, 2009).
  3. O. S. Khalil, “Non-invasive Glucose Measurement Technologies: An Update from 1999 to the Dawn of the New Millennium,” Diabetes Technol. Ther.6(5), 660–697 (2004). [CrossRef] [PubMed]
  4. S. Liakat, K. A. Bors, T. Y. Huang, A. P. Michel, E. Zanghi, and C. F. Gmachl, “In vitro measurements of physiological glucose concentrations in biological fluids using mid-infrared light,” Biomed. Opt. Express4(7), 1083–1090 (2013). [CrossRef] [PubMed]
  5. T. M. Greve, S. Kamp, and G. B. Jemec, “Disease quantification in dermatology: in vivo near-infrared spectroscopy measures correlate strongly with the clinical assessment of psoriasis severity,” J. Biomed. Opt.18(3), 037006 (2013). [CrossRef] [PubMed]
  6. R. P. Smith, S. J. Riesenfeld, A. K. Holloway, Q. Li, K. K. Murphy, N. M. Feliciano, L. Orecchia, N. Oksenberg, K. S. Pollard, and N. Ahituv, “A compact, in vivo screen of all 6-mers reveals drivers of tissue-specific expression and guides synthetic regulatory element design,” Genome Biol.14(7), R72 (2013). [CrossRef] [PubMed]
  7. G. Nir, R. S. Sahebjavaher, P. Kozlowski, S. D. Chang, R. Sinkus, S. L. Goldenberg, and S. E. Salcudean, “Model-based registration of ex vivo and in vivo MRI of the prostate using elastography,” IEEE Trans. Med. Imaging32(6), 1068–1080 (2013). [CrossRef] [PubMed]
  8. K. Maruo, M. Tsurugi, M. Tamura, and Y. Ozaki, “In vivo noninvasive measurement of blood glucose by near-infrared diffuse-reflectance spectroscopy,” Appl. Spectrosc.57(10), 1236–1244 (2003). [CrossRef] [PubMed]
  9. N. C. Dingari, I. Barman, G. P. Singh, J. W. Kang, R. R. Dasari, and M. S. Feld, “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Anal. Bioanal. Chem.400(9), 2871–2880 (2011). [CrossRef] [PubMed]
  10. H. Ullah, B. Davoudi, A. Mariampillai, G. Hussain, M. Ikram, and I. A. Vitkin, “Quantification of glucose levels in flowing blood using M-mode swept source optical coherence tomography,” Laser Phys.22(4), 797–804 (2012). [CrossRef]
  11. Q. L. Zhao, J. L. Si, Z. Y. Guo, H. J. Wei, H. Q. Yang, G. Y. Wu, S. S. Xie, X. Y. Li, X. Guo, H. Q. Zhong, and L. Q. Li, “Quantifying glucose permeability and enhanced light penetration in ex vivo human normal and cancerous esophagus tissues with optical coherence tomography,” Laser Phys. Lett.8(1), 71–77 (2011). [CrossRef]
  12. K. Maruo, T. Oota, M. Tsurugi, T. Nakagawa, H. Arimoto, M. Tamura, Y. Ozaki, and Y. Yamada, “New Methodology to Obtain a Calibration Model for Noninvasive Near-Infrared Blood Glucose Monitoring,” Appl. Spectrosc.60(4), 441–449 (2006). [CrossRef] [PubMed]
  13. M. K. Chowdhury, A. Srivastava, N. Sharma, and S. Sharma, “Challenges and countermeasures in optical noninvasive blood glucose detection,” Int. J. Innovative Res. Sci. Eng. Technol.2(1), 329–334 (2013).
  14. M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, and W. Mäntele, “In vivo Noninvasive Monitoring of Glucose Concentration in Human Epidermis by Mid-Infrared Pulsed Photoacoustic Spectroscopy,” Anal. Chem.85(2), 1013–1020 (2013). [CrossRef] [PubMed]
  15. A. Seddon, “Mid-infrared (IR) – A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancer in vivo,” Phys. Status Solidi, B Basic Res.250(5), 1020–1027 (2013). [CrossRef]
  16. S. Liakat, A. P. Michel, K. A. Bors, and C. Gmachl, “Mid-infrared (λ=8.4-9.9 μm) light scattering from porcine tissue,” Appl. Phys. Lett.101(9), 093705 (2012). [CrossRef]
  17. A. P. Michel, S. Liakat, K. Bors, and C. F. Gmachl, “In vivo measurement of mid-infrared light scattering from human skin,” Biomed. Opt. Express4(4), 520–530 (2013). [CrossRef] [PubMed]
  18. S. N. Thennadil, J. L. Rennert, B. J. Wenzel, K. H. Hazen, T. L. Ruchti, and M. B. Block, “Comparison of Glucose Concentration in Interstitial Fluid, and Capillary and Venous Blood During Rapid Changes in Blood Glucose Levels,” Diabetes Technol. Ther.3(3), 357–365 (2001). [CrossRef] [PubMed]
  19. J. S. Li, W. Chen, and H. Fischer, “Quantum Cascade Laser Spectrometry Techniques: A New Trend in Atmospheric Chemistry,” Appl. Spectrosc. Rev.48(7), 523–559 (2013). [CrossRef]
  20. M. E. Lamar, T. J. Kuehl, A. T. Cooney, L. J. Gayle, S. Holleman, and S. R. Allen, “Jelly beans as an alternative to a fifty-gram glucose beverage for gestational diabetes screening,” Am. J. Obstet. Gynecol.181(5), 1154–1157 (1999). [CrossRef] [PubMed]
  21. J. Jun, J. Harris, J. Humphrey, and S. Rastegar, “Effect of Thermal Damage and Biaxial Loading on the Optical Properties of a Collagenous Tissue,” Transactions of the ASME,125,540-548 (2003). [CrossRef]
  22. S. de Jong, “SIMPLS: an alternative approach to partial least squares regression,” Chemom. Intell. Lab. Syst.18(3), 251–263 (1993). [CrossRef]
  23. W. L. Clarke, D. Cox, L. A. Gonder-Frederick, W. Carter, and S. L. Pohl, “Evaluating clinical accuracy of systems for self-monitoring of blood glucose,” Diabetes Care10(5), 622–628 (1987). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited