OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 7 — Jul. 1, 2014
  • pp: 2446–2457

Multi-photon excited luminescence of magnetic FePt core-shell nanoparticles

K.M. Seemann and B. Kuhn  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 7, pp. 2446-2457 (2014)
http://dx.doi.org/10.1364/BOE.5.002446


View Full Text Article

Enhanced HTML    Acrobat PDF (5424 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present magnetic FePt nanoparticles with a hydrophilic, inert, and biocompatible silico-tungsten oxide shell. The particles can be functionalized, optically detected, and optically manipulated. To show the functionalization the fluorescent dye NOPS was bound to the FePt core-shell nanoparticles with propyl-triethoxy-silane linkers and fluorescence of the labeled particles were observed in ethanol (EtOH). In aqueous dispersion the NOPS fluorescence is quenched making them invisible using 1-photon excitation. However, we observe bright luminescence of labeled and even unlabeled magnetic core-shell nanoparticles with multi-photon excitation. Luminescence can be detected in the near ultraviolet and the full visible spectral range by near infrared multi-photon excitation. For optical manipulation, we were able to drag clusters of particles, and maybe also single particles, by a focused laser beam that acts as optical tweezers by inducing an electric dipole in the insulated metal nanoparticles. In a first application, we show that the luminescence of the core-shell nanoparticles is bright enough for in vivo multi-photon imaging in the mouse neocortex down to cortical layer 5.

© 2014 Optical Society of America

OCIS Codes
(020.4180) Atomic and molecular physics : Multiphoton processes
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(300.6410) Spectroscopy : Spectroscopy, multiphoton
(160.4236) Materials : Nanomaterials

ToC Category:
Nanotechnology and Plasmonics

History
Original Manuscript: April 17, 2014
Revised Manuscript: June 20, 2014
Manuscript Accepted: June 23, 2014
Published: June 27, 2014

Citation
K.M. Seemann and B. Kuhn, "Multi-photon excited luminescence of magnetic FePt core-shell nanoparticles," Biomed. Opt. Express 5, 2446-2457 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-7-2446


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J.-H. Lee, J.-T. Jang, J.-S. Choi, S. H. Moon, S.-H. Noh, J.-W. Kim, J.-G. Kim, I.-S. Kim, K. I. Park, and J. Cheon, “Exchange-coupled magnetic nanoparticles for efficient heat induction,” Nat. Nanotechnol.6(7), 418–422 (2011). [CrossRef] [PubMed]
  2. P. Cherukuri, E. S. Glazer, and S. A. Curley, “Targeted hyperthermia using metal nanoparticles,” Adv. Drug Deliv. Rev.62(3), 339–345 (2010). [CrossRef] [PubMed]
  3. K. M. Seemann, A. Bauer, J. Kindervater, M. Meyer, C. Besson, M. Luysberg, P. Durkin, W. Pyckhout-Hintzen, N. Budisa, R. Georgii, C. M. Schneider, and P. Kögerler, “Polyoxometalate-stabilized, water dispersible Fe₂Pt magnetic nanoparticles,” Nanoscale5(6), 2511–2519 (2013). [CrossRef] [PubMed]
  4. A. Neyman, L. Meshi, L. Zeiri, and I. A. Weinstock, “Direct imaging of the ligand monolayer on an anion-protected metal nanoparticle through cryogenic trapping of its solution-state structure,” J. Am. Chem. Soc.130(49), 16480–16481 (2008). [CrossRef] [PubMed]
  5. Y. Wang, A. Neyman, E. Arkhangelsky, V. Gitis, L. Meshi, and I. A. Weinstock, “Self-assembly and structure of directly imaged inorganic-anion monolayers on a gold nanoparticle,” J. Am. Chem. Soc.131(47), 17412–17422 (2009). [CrossRef] [PubMed]
  6. M. Goeppert-Mayer, “Über Elementarakte mit zwei Quantensprüngen,” Annalen der Physik401(3), 273–294 (1931). [CrossRef]
  7. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990). [CrossRef] [PubMed]
  8. K. Svoboda and R. Yasuda, “Principles of two-photon excitation microscopy and its applications to neuroscience,” Neuron50(6), 823–839 (2006). [CrossRef] [PubMed]
  9. G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter33(12), 7923–7936 (1986). [CrossRef] [PubMed]
  10. H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005). [CrossRef] [PubMed]
  11. D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003). [CrossRef] [PubMed]
  12. K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett.19(13), 930–932 (1994). [CrossRef] [PubMed]
  13. J. Blechinger, R. Herrmann, D. Kiener, F. J. García-García, Ch. Scheu, A. Reller, and Ch. Bräuchle, “Perylene-Labeled Silica Nanoparticles: Synthesis and Characterization of three novel silica nanoparticle species for live-cell imaging,” Small6(21), 2427–2435 (2010). [CrossRef] [PubMed]
  14. T. A. Pologruto, B. L. Sabatini, and K. Svoboda, “ScanImage: Flexible software for operating laser scanning microscopes,” Biomed. Eng. Online2(1), 13 (2003). [CrossRef] [PubMed]
  15. J. M. Dixon, M. Taniguchi, and J. S. Lindsey, “PhotochemCAD 2: A refined program with accompanying spectral databases for photochemical calculations,” Photochem. Photobiol.81(1), 212–213 (2005). [CrossRef] [PubMed]
  16. T. M. Hoogland, B. Kuhn, W. Göbel, W. Huang, J. Nakai, F. Helmchen, J. Flint, and S. S.-H. Wang, “Radially expanding transglial calcium waves in the intact cerebellum,” Proc. Natl. Acad. Sci. U.S.A.106(9), 3496–3501 (2009). [CrossRef] [PubMed]
  17. B. Kuhn, T. M. Hoogland, and S. S.-H. Wang, “Injection of recombinant adenovirus for delivery of genetically encoded calcium indicators into astrocytes of the cerebellar cortex,” Cold Spring Harb Protoc2011(10), 1217–1223 (2011). [CrossRef] [PubMed]
  18. B. Kuhn, I. Ozden, Y. Lampi, M. T. Hasan, and S. S.-H. Wang, “An amplified promoter system for targeted expression of calcium indicator proteins in the cerebellar cortex,” Front Neural Circuits6, 49 (2012). [CrossRef] [PubMed]
  19. A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009). [CrossRef] [PubMed]
  20. K. E. Elkins, T. S. Vedantam, J. P. Liu, H. Zeng, S. Sun, Y. Ding, and Z. L. Wang, “Ultrafine FePt nanoparticles prepared by the chemical reduction method,” Nano Lett.3(12), 1647–1649 (2003). [CrossRef]
  21. M. Ormö, A. B. Cubitt, K. Kallio, L. A. Gross, R. Y. Tsien, and S. J. Remington, “Crystal Structure of the Aequorea victoria Green Fluorescent Protein,” Science273(5280), 1392–1395 (1996). [CrossRef] [PubMed]
  22. R. G. Thorne and C. Nicholson, “In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space,” Proc. Natl. Acad. Sci. U.S.A.103(14), 5567–5572 (2006). [CrossRef] [PubMed]
  23. J. P. Pinheiro, R. Domingos, R. Lopez, R. Brayner, F. Fiévet, and K. Wilkinson, “Determination of diffusion coefficients of nanoparticles and humic substances using scanning stripping chronopotentiometry (SSCP),” Colloids Surf., A295(1–3), 200–208 (2007). [CrossRef]
  24. V. Zamora-Mora, M. Fernández-Gutiérrez, J. San Román, G. Goya, R. Hernández, and C. Mijangos, “Magnetic core-shell chitosan nanoparticles: Rheological characterization and hyperthermia application,” Carbohydr. Polym.102, 691–698 (2014). [CrossRef] [PubMed]
  25. J.-P. Fortin, C. Wilhelm, J. Servais, C. Ménager, J. C. Bacri, and F. Gazeau, “Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia,” J. Am. Chem. Soc.129(9), 2628–2635 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited