OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 8 — Aug. 1, 2014
  • pp: 2471–2480

Trapping of a single DNA molecule using nanoplasmonic structures for biosensor applications

Jung-Dae Kim and Yong-Gu Lee  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 8, pp. 2471-2480 (2014)
http://dx.doi.org/10.1364/BOE.5.002471


View Full Text Article

Enhanced HTML    Acrobat PDF (1957 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Conventional optical trapping using a tightly focused beam is not suitable for trapping particles that are smaller than the diffraction limit because of the increasing need of the incident laser power that could produce permanent thermal damages. One of the current solutions to this problem is to intensify the local field enhancement by using nanoplasmonic structures without increasing the laser power. Nanoplasmonic tweezers have been used for various small molecules but there is no known report of trapping a single DNA molecule. In this paper, we present the trapping of a single DNA molecule using a nanohole created on a gold substrate. Furthermore, we show that the DNA of different lengths can be differentiated through the measurement of scattering signals leading to possible new DNA sensor applications.

© 2014 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(240.6680) Optics at surfaces : Surface plasmons
(240.3695) Optics at surfaces : Linear and nonlinear light scattering from surfaces
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optical Traps, Manipulation, and Tracking

History
Original Manuscript: February 25, 2014
Revised Manuscript: May 19, 2014
Manuscript Accepted: June 16, 2014
Published: July 3, 2014

Citation
Jung-Dae Kim and Yong-Gu Lee, "Trapping of a single DNA molecule using nanoplasmonic structures for biosensor applications," Biomed. Opt. Express 5, 2471-2480 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-8-2471


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett.11(5), 288–290 (1986). [CrossRef] [PubMed]
  2. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J.61(2), 569–582 (1992). [CrossRef] [PubMed]
  3. K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett.19(13), 930–932 (1994). [CrossRef] [PubMed]
  4. L. Huang and O. J. F. Martin, “Reversal of the optical force in a plasmonic trap,” Opt. Lett.33(24), 3001–3003 (2008). [CrossRef] [PubMed]
  5. M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, “Near-field photonic forces,” Philos. Trans. A Math Phys. Eng. Sci.362(1817), 719–737 (2004). [CrossRef] [PubMed]
  6. K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett.83(22), 4534–4537 (1999). [CrossRef]
  7. R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev.106(5), 874–881 (1957). [CrossRef]
  8. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  9. F. J. Garcia de Abajo, “Light transmission through a single cylindrical hole in a metallic film,” Opt. Express10(25), 1475–1484 (2002). [CrossRef] [PubMed]
  10. F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett.95(10), 103901 (2005). [CrossRef] [PubMed]
  11. T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys.44(12), L364–L366 (2005). [CrossRef]
  12. M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys.5(12), 915–919 (2009). [CrossRef]
  13. Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett.11(9), 3763–3767 (2011). [CrossRef] [PubMed]
  14. A. Zehtabi-Oskuie, H. Jiang, B. R. Cyr, D. W. Rennehan, A. A. Al-Balushi, and R. Gordon, “Double nanohole optical trapping: dynamics and protein-antibody co-trapping,” Lab Chip13(13), 2563–2568 (2013). [CrossRef] [PubMed]
  15. Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett.12(1), 402–406 (2012). [CrossRef] [PubMed]
  16. A. Kotnala, D. DePaoli, and R. Gordon, “Sensing nanoparticles using a double nanohole optical trap,” Lab Chip13(20), 4142–4146 (2013). [CrossRef] [PubMed]
  17. T. Shoji, J. Saitoh, N. Kitamura, F. Nagasawa, K. Murakoshi, H. Yamauchi, S. Ito, H. Miyasaka, H. Ishihara, and Y. Tsuboi, “Permanent fixing or reversible trapping and release of DNA micropatterns on a gold nanostructure using continuous-wave or femtosecond-pulsed near-infrared laser light,” J. Am. Chem. Soc.135(17), 6643–6648 (2013). [CrossRef] [PubMed]
  18. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature457(7225), 71–75 (2009). [CrossRef] [PubMed]
  19. Y.-F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett.12(3), 1633–1637 (2012). [CrossRef] [PubMed]
  20. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics5(6), 349–356 (2011). [CrossRef]
  21. C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett.12(1), 125–132 (2012). [CrossRef] [PubMed]
  22. C. M. Galloway, M. P. Kreuzer, S. S. Aćimović, G. Volpe, M. Correia, S. B. Petersen, M. T. Neves-Petersen, and R. Quidant, “Plasmon-assisted delivery of single nano-objects in an optical hot spot,” Nano Lett.13(9), 4299–4304 (2013). [CrossRef] [PubMed]
  23. K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun.2, 469 (2011). [CrossRef] [PubMed]
  24. A. A. E. Saleh and J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano Lett.12(11), 5581–5586 (2012). [CrossRef] [PubMed]
  25. Y.-T. Chen, Y.-C. Liu, W.-F. Fang, C.-J. Huang, S.-K. Fan, W.-J. Chen, W.-T. Chang, C.-H. Huang, and J.-T. Yang, “DNA diagnosis in a microseparator based on particle aggregation,” Biosens. Bioelectron.50, 8–13 (2013). [CrossRef] [PubMed]
  26. D. Wang, G. Chen, H. Wang, W. Tang, W. Pan, N. Li, and F. Liu, “A reusable quartz crystal microbalance biosensor for highly specific detection of single-base DNA mutation,” Biosens. Bioelectron.48, 276–280 (2013). [CrossRef] [PubMed]
  27. A. G. Cherstvy, “Detection of DNA hybridization by field-effect DNA-based biosensors: mechanisms of signal generation and open questions,” Biosens. Bioelectron.46, 162–170 (2013). [CrossRef] [PubMed]
  28. X. Zhu, L. Sun, Y. Chen, Z. Ye, Z. Shen, and G. Li, “Combination of cascade chemical reactions with graphene-DNA interaction to develop new strategy for biosensor fabrication,” Biosens. Bioelectron.47, 32–37 (2013). [CrossRef] [PubMed]
  29. T.-Y. Chen, P. T. K. Loan, C.-L. Hsu, Y.-H. Lee, J. Tse-Wei Wang, K.-H. Wei, C.-T. Lin, and L.-J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron.41, 103–109 (2013). [CrossRef] [PubMed]
  30. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev.66(7-8), 163–182 (1944). [CrossRef]
  31. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010). [CrossRef]
  32. A. Roberts, “Electromagnetic theory of diffraction by a circular aperture in a thick, perfectly conducting screen,” J. Opt. Soc. Am. A4(10), 1970–1983 (1987). [CrossRef]
  33. D. E. Smith, T. T. Perkins, and S. Chu, “Dynamical scaling of DNA diffusion coefficients,” Macromolecules29(4), 1372–1373 (1996). [CrossRef]
  34. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons 1998), p. 132.
  35. H. Yamakawa, Helical Wormlike Chains in Polymer Solutions (Springer-Verlag GmbH, 1997), p. 418.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited