OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 8 — Aug. 1, 2014
  • pp: 2488–2502

Photothermal tomography for the functional and structural evaluation, and early mineral loss monitoring in bones

Sreekumar Kaiplavil, Andreas Mandelis, Xueding Wang, and Ting Feng  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 8, pp. 2488-2502 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (5801 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Salient features of a new non-ionizing bone diagnostics technique, truncated-correlation photothermal coherence tomography (TC-PCT), exhibiting optical-grade contrast and capable of resolving the trabecular network in three dimensions through the cortical region with and without a soft-tissue overlayer are presented. The absolute nature and early demineralization-detection capability of a marker called thermal wave occupation index, estimated using the proposed modality, have been established. Selective imaging of regions of a specific mineral density range has been demonstrated in a mouse femur. The method is maximum-permissible-exposure compatible. In a matrix of bone and soft-tissue a depth range of ~3.8 mm has been achieved, which can be increased through instrumental and modulation waveform optimization. Furthermore, photoacoustic microscopy, a comparable modality with TC-PCT, has been used to resolve the trabecular structure and for comparison with the photothermal tomography.

© 2014 Optical Society of America

OCIS Codes
(110.6960) Imaging systems : Tomography
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(350.5340) Other areas of optics : Photothermal effects
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Image Reconstruction and Inverse Problems

Original Manuscript: November 5, 2013
Revised Manuscript: December 15, 2013
Manuscript Accepted: January 7, 2014
Published: July 7, 2014

Sreekumar Kaiplavil, Andreas Mandelis, Xueding Wang, and Ting Feng, "Photothermal tomography for the functional and structural evaluation, and early mineral loss monitoring in bones," Biomed. Opt. Express 5, 2488-2502 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. C. Röntgen, “On a new kind of rays,” Science3(59), 227–231 (1896). [CrossRef] [PubMed]
  2. M. I. Pupin, “Röntgen rays,” Science3(59), 231–235 (1896). [CrossRef] [PubMed]
  3. W. A. Kalender, “X-ray computed tomography,” Phys. Med. Biol.51(13), R29–R43 (2006). [CrossRef] [PubMed]
  4. E. Seeram, Computed Tomography: Physical Principles, Clinical Applications, and Quality Control (Saunders/Elsevier, 2009).
  5. S. L. Bonnick, Bone Densitometry in Clinical Practice: Application and Interpretation (Humana Press, 2010).
  6. G. M. Blake and I. Fogelman, “Role of dual-energy X-ray absorptiometry in the diagnosis and treatment of osteoporosis,” J. Clin. Densitom.10(1), 102–110 (2007). [CrossRef] [PubMed]
  7. E. L. Ritman, “Current status of developments and applications of micro-CT,” Annu. Rev. Biomed. Eng.13(1), 531–552 (2011). [CrossRef] [PubMed]
  8. Z. C. Li, S. D. Jiang, J. Yan, L. S. Jiang, and L. Y. Dai, “Small-animal PET/CT assessment of bone microdamage in ovariectomized rats,” J. Nucl. Med.52(5), 769–775 (2011). [CrossRef] [PubMed]
  9. R. Linke, T. Kuwert, M. Uder, R. Forst, and W. Wuest, “Skeletal SPECT/CT of the peripheral extremities,” AJR Am. J. Roentgenol.194(4), W329–W335 (2010). [CrossRef] [PubMed]
  10. H. K. Genant, K. Engelke, and S. Prevrhal, “Advanced CT bone imaging in osteoporosis,” Rheumatology (Oxford)47(Suppl 4), iv9–iv16 (2008). [CrossRef] [PubMed]
  11. E. L. Kaijzel, T. J. A. Snoeks, J. T. Buijs, G. van der Pluijm, and C. W. G. M. Löwik, “Multimodal imaging and treatment of bone metastasis,” Clin. Exp. Metastasis26(4), 371–379 (2009). [CrossRef] [PubMed]
  12. E. R. C. Draper, M. D. Morris, N. P. Camacho, P. Matousek, M. Towrie, A. W. Parker, and A. E. Goodship, “Novel assessment of bone using time-resolved transcutaneous Raman spectroscopy,” J. Bone Miner. Res.20(11), 1968–1972 (2005). [CrossRef] [PubMed]
  13. L. Vico, P. Collet, A. Guignandon, M. H. Lafage-Proust, T. Thomas, M. Rehaillia, and C. Alexandre, “Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts,” Lancet355(9215), 1607–1611 (2000). [CrossRef] [PubMed]
  14. NASA HRP-47060, Evidence Book: Risk of Accelerated Osteoporosis (Lyndon B Johnson Space Center, 2008).
  15. S. Nayak, I. Olkin, H. Liu, M. Grabe, M. K. Gould, I. E. Allen, D. K. Owens, and D. M. Bravata, “Meta-analysis: Accuracy of quantitative ultrasound for identifying patients with osteoporosis,” Ann. Intern. Med.144(11), 832–841 (2006). [CrossRef] [PubMed]
  16. C. Djokoto, G. Tomlinson, S. Waldman, M. Grynpas, and A. M. Cheung, “Relationship among MRTA, DXA, and QUS,” J. Clin. Densitom.7(4), 448–456 (2004). [CrossRef] [PubMed]
  17. S. G. Roberts, T. M. Hutchinson, S. B. Arnaud, B. J. Kiratli, R. B. Martin, and C. R. Steele, “Noninvasive determination of bone mechanical properties using vibration response: a refined model and validation in vivo,” J. Biomech.29(1), 91–98 (1996). [CrossRef] [PubMed]
  18. L. V. Wang, Biomedical Optics: Principles and Imaging (John Wiley and Sons, 2007).
  19. T. J. A. Snoeks, A. Khmelinskii, B. P. F. Lelieveldt, E. L. Kaijzel, and C. W. G. M. Löwik, “Optical advances in skeletal imaging applied to bone metastases,” Bone48(1), 106–114 (2011). [CrossRef] [PubMed]
  20. K. M. Kozloff, R. Weissleder, and U. J. Mahmood, “Noninvasive Optical Detection of Bone Mineral,” J. Bone Miner. Res.22(8), 1208–1216 (2007). [CrossRef] [PubMed]
  21. A. Vatsa, D. Mizuno, T. H. Smit, C. F. Schmidt, F. C. MacKintosh, and J. Klein-Nulend, “Bio imaging of intracellular NO production in single bone cells after mechanical stimulation,” J. Bone Miner. Res.21(11), 1722–1728 (2006). [CrossRef] [PubMed]
  22. C. Kasseck, M. Kratz, A. Torcasio, N. C. Gerhardt, G. H. van Lenthe, T. Gambichler, K. Hoffmann, D. B. Jones, and M. R. Hofmann, “Comparison of optical coherence tomography, microcomputed tomography, and histology at a three-dimensionally imaged trabecular bone sample,” J. Biomed. Opt.15(4), 046019 (2010). [CrossRef] [PubMed]
  23. K. Beaudette, M. Strupler, F. Benboujja, S. Parent, C. E. Aubin, and C. Boudoux, “Optical coherence tomography for the identification of musculoskeletal structures of the spine: a pilot study,” Biomed. Opt. Express3(3), 533–542 (2012). [CrossRef] [PubMed]
  24. Y. Xu, N. Iftimia, H. Jiang, L. L. Key, and M. B. Bolster, “Three-dimensional diffuse optical tomography of bones and joints,” J. Biomed. Opt.7(1), 88–92 (2002). [CrossRef] [PubMed]
  25. A. Takeuchi, R. Araki, S. G. Proskurin, Y. Takahashi, Y. Yamada, J. Ishii, S. Katayama, and A. Itabashi, “A new method of bone tissue measurement based upon light scattering,” J. Bone Miner. Res.12(2), 261–266 (1997). [CrossRef] [PubMed]
  26. S. Gourion-Arsiquaud, L. Lukashova, J. Power, N. Loveridge, J. Reeve, and A. L. Boskey, “Fourier transform infrared imaging of femoral neck bone: Reduced heterogeneity of mineral-to-matrix and carbonate-to-phosphate and more variable crystallinity in treatment-naive fracture cases compared with fracture-free controls,” J. Bone Miner. Res.28(1), 150–161 (2013). [CrossRef] [PubMed]
  27. E. P. Paschalis, R. Mendelsohn, and A. L. Boskey, “Infrared assessment of bone quality: a review,” Clin. Orthop. Relat. Res.469(8), 2170–2178 (2011). [CrossRef] [PubMed]
  28. M. D. Morris and G. S. Mandair, “Raman assessment of bone quality,” Clin. Orthop. Relat. Res.469(8), 2160–2169 (2011). [CrossRef] [PubMed]
  29. D. P. Almond and P. M. Patel, Photothermal Science and Techniques (Chapman and Hall, 1996).
  30. S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol.37(6), 1203–1217 (1992). [CrossRef] [PubMed]
  31. N. Ugryumova, S. J. Matcher, and D. P. Attenburrow, “Measurement of bone mineral density via light scattering,” Phys. Med. Biol.49(3), 469–483 (2004). [CrossRef] [PubMed]
  32. A. Mandelis, L. Nicolaides, and Y. Chen, “Structure and the reflectionless/refractionless nature of parabolic diffusion-wave fields,” Phys. Rev. Lett.87(2), 020801 (2001). [CrossRef]
  33. S. A. Telenko, G. Vargas, J. S. Nelson, and T. E. Milner, “Coherent thermal wave imaging of subsurface chromophores in biological materials,” Phys. Med. Biol.47(4), 657–671 (2002). [CrossRef] [PubMed]
  34. E. Absil, G. Tessier, M. Gross, M. Atlan, N. Warnasooriya, S. Suck, M. Coppey-Moisan, and D. Fournier, “Photothermal heterodyne holography of gold nanoparticles,” Opt. Express18(2), 780–786 (2010). [CrossRef] [PubMed]
  35. A. Mandelis, “Frequency modulated (FM) time delay photoacoustic and photothermal wave spectroscopies. Technique, instrumentation, and detection. Part I: Theoretical,” Rev. Sci. Instrum.57(4), 617–621 (1986). [CrossRef]
  36. N. Tabatabaei and A. Mandelis, “Thermal coherence tomography using match filter binary phase coded diffusion waves,” Phys. Rev. Lett.107(16), 165901 (2011). [CrossRef] [PubMed]
  37. N. Levanon and E. Mozeson, Radar Signals (John Wiley and Sons, 2004).
  38. S. Kaiplavil and A. Mandelis, “Truncated-correlation photothermal coherence tomography: “Crisp” imaging breaking through the diffusion resolution and depth barriers,” Revised. submitted.
  39. S. Kaiplavil and A. Mandelis, “Highly depth-resolved chirped pulse photothermal radar for bone diagnostics,” Rev. Sci. Instrum.82(7), 074906 (2011). [CrossRef] [PubMed]
  40. ANSI Z136.1, American National Standard for Safe Use of Lasers (Laser Institute of America, 2007).
  41. K. N. Plataniotis and A. N. Venetsanopoulos, Color Image Processing and Applications (Springer-Verlag, 2000).
  42. http://rsbweb.nih.gov/ij/
  43. L. Huang and M. J. Wang, “Image thresholding by minimizing the measures of fuzziness,” Pattern Recognit.28(1), 41–51 (1995). [CrossRef]
  44. H. Ehrlich, P. G. Koutsoukos, K. D. Demadis, and O. S. Pokrovsky, “Principles of demineralization: Modern strategies for the isolation of organic frameworks. Part II. Decalcification,” Micron40(2), 169–193 (2009). [CrossRef] [PubMed]
  45. B. C. Kuo and F. Golnaraghi, Automatic Control Systems (Wiley, 2002).
  46. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol.21(7), 803–806 (2003). [CrossRef] [PubMed]
  47. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum.77(4), 041101 (2006). [CrossRef]
  48. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics3(9), 503–509 (2009). [CrossRef] [PubMed]
  49. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006). [CrossRef] [PubMed]
  50. X. Wang, D. L. Chamberland, P. L. Carson, J. B. Fowlkes, R. O. Bude, D. A. Jamadar, and B. J. Roessler, “Imaging of joints with laser-based photoacoustic tomography: An animal study,” Med. Phys.33(8), 2691–2697 (2006). [CrossRef] [PubMed]
  51. D. L. Chamberland, A. Agarwal, N. Kotov, J. Brian Fowlkes, P. L. Carson, and X. Wang, “Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent-an ex vivo preliminary rat study,” Nanotechnology19(9), 095101 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited