OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 8 — Aug. 1, 2014
  • pp: 2503–2516

Gender-related effects of prefrontal cortex connectivity: a resting-state functional optical tomography study

Ching-Cheng Chuang and Chia-Wei Sun  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 8, pp. 2503-2516 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (4102 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The prefrontal cortex (PFC) is thought to play an important role in “higher” brain functions such as personality and emotion that may associated with several gender-related mental disorders. In this study, the gender effects of functional connectivity, cortical lateralization and significantly differences in the PFC were investigated by using resting-state functional optical tomography (fOT) measurement. A total of forty subjects including twenty healthy male and twenty healthy female adults were recruited for this study. In the results, the hemoglobin responses are higher in the male group. Additionally, male group exhibited the stronger connectivity in the PFC regions. In the result of lateralization, leftward dominant was observed in the male group but bilateral dominance in the female group. Finally, the 11 channels of the inferior PFC regions (corresponding to the region of Brodmann area 45) are significant different with spectrum analysis. Our findings suggest that the resting-state fOT method can provide high potential to apply to clinical neuroscience for several gender-related mental disorders diagnosis.

© 2014 Optical Society of America

OCIS Codes
(170.1610) Medical optics and biotechnology : Clinical applications
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
Neuroscience and Brain Imaging

Original Manuscript: April 17, 2014
Revised Manuscript: June 29, 2014
Manuscript Accepted: June 29, 2014
Published: July 7, 2014

Ching-Cheng Chuang and Chia-Wei Sun, "Gender-related effects of prefrontal cortex connectivity: a resting-state functional optical tomography study," Biomed. Opt. Express 5, 2503-2516 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Rosazza and L. Minati, “Resting-state brain networks: literature review and clinical applications,” Neurol. Sci.32(5), 773–785 (2011). [CrossRef] [PubMed]
  2. H. Niu, J. Wang, T. Zhao, N. Shu, and Y. He, “Revealing topological organization of human brain functional networks with resting-state functional near infrared spectroscopy,” PLoS ONE7(9), e45771 (2012). [CrossRef] [PubMed]
  3. E. Glerean, J. Salmi, J. M. Lahnakoski, I. P. Jääskeläinen, and M. Sams, “Functional magnetic resonance imaging phase synchronization as a measure of dynamic functional connectivity,” Brain Connect.2(2), 91–101 (2012). [CrossRef] [PubMed]
  4. L. Tian, J. Wang, C. Yan, and Y. He, “Hemisphere- and gender-related differences in small-world brain networks: A resting-state functional MRI study,” Neuroimage54(1), 191–202 (2011). [CrossRef] [PubMed]
  5. R. C. Mesquita, M. A. Franceschini, and D. A. Boas, “Resting state functional connectivity of the whole head with near-infrared spectroscopy,” Biomed. Opt. Express1(1), 324–336 (2010). [CrossRef] [PubMed]
  6. D. Cordes, V. M. Haughton, K. Arfanakis, J. D. Carew, P. A. Turski, C. H. Moritz, M. A. Quigley, and M. E. Meyerand, “Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data,” AJNR Am. J. Neuroradiol.22(7), 1326–1333 (2001). [PubMed]
  7. X. W. Song, Z. Y. Dong, X. Y. Long, S. F. Li, X. N. Zuo, C. Z. Zhu, Y. He, C. G. Yan, and Y. F. Zang, “REST: A Toolkit for resting-state functional magnetic resonance imaging data processing,” PLoS ONE6(9), e25031 (2011). [CrossRef] [PubMed]
  8. M. D. Fox and M. Greicius, “Clinical applications of resting state functional connectivity,” Front Syst. Neurosci.4, 19 (2010). [PubMed]
  9. P. Fransson, B. Skiöld, S. Horsch, A. Nordell, M. Blennow, H. Lagercrantz, and U. Åden, “Resting-state networks in the infant brain,” Proc. Natl. Acad. Sci. U.S.A.104(39), 15531–15536 (2007). [CrossRef] [PubMed]
  10. H. Yang, X. Y. Long, Y. Yang, H. Yan, C. Z. Zhu, X. P. Zhou, Y. F. Zang, and Q. Y. Gong, “Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI,” Neuroimage36(1), 144–152 (2007). [CrossRef] [PubMed]
  11. M. P. van den Heuvel and H. E. Hulshoff Pol, “Exploring the brain network: A review on resting-state fMRI functional connectivity,” Eur. Neuropsychopharmacol.20(8), 519–534 (2010). [CrossRef] [PubMed]
  12. G. Boas, “Noninvasive imaging of the brain,” Opt. Photonics News15, 52–55 (2004).
  13. S. Sasai, F. Homae, H. Watanabe, and G. Taga, “Frequency-specific functional connectivity in the brain during resting state revealed by NIRS,” Neuroimage56(1), 252–257 (2011). [CrossRef] [PubMed]
  14. S. Sasai, F. Homae, H. Watanabe, A. T. Sasaki, H. C. Tanabe, N. Sadato, and G. Taga, “A NIRS-fMRI study of resting state network,” Neuroimage63(1), 179–193 (2012). [CrossRef] [PubMed]
  15. A. V. Medvedev, “Does the resting state connectivity have hemispheric asymmetry? A near-infrared spectroscopy study,” Neuroimage85(Pt 1), 400–407 (2014). [CrossRef] [PubMed]
  16. Y. Tong, L. M. Hocke, S. C. Licata, and B. Frederick, “Low-frequency oscillations measured in the periphery with near-infrared spectroscopy are strongly correlated with blood oxygen level-dependent functional magnetic resonance imaging signals,” J. Biomed. Opt.17(10), 106004 (2012). [CrossRef] [PubMed]
  17. R. M. Birn, J. B. Diamond, M. A. Smith, and P. A. Bandettini, “Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI,” Neuroimage31(4), 1536–1548 (2006). [CrossRef] [PubMed]
  18. T. E. Lund, K. H. Madsen, K. Sidaros, W. L. Luo, and T. E. Nichols, “Non-white noise in fMRI: Does modelling have an impact?” Neuroimage29(1), 54–66 (2006). [CrossRef] [PubMed]
  19. S. C. Bunce, M. Izzetoglu, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional near-infrared spectroscopy,” IEEE Eng. Med. Biol. Mag.25(4), 54–62 (2006). [CrossRef] [PubMed]
  20. H. Zhang, L. Duan, Y. J. Zhang, C. M. Lu, H. Liu, and C. Z. Zhu, “Test-retest assessment of independent component analysis-derived resting-state functional connectivity based on functional near-infrared spectroscopy,” Neuroimage55(2), 607–615 (2011). [CrossRef] [PubMed]
  21. H. Zhang, Y. J. Zhang, C. M. Lu, S. Y. Ma, Y. F. Zang, and C. Z. Zhu, “Functional connectivity as revealed by independent component analysis of resting-state fNIRS measurements,” Neuroimage51(3), 1150–1161 (2010). [CrossRef] [PubMed]
  22. Y. J. Zhang, C. M. Lu, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Detecting resting-state functional connectivity in the language system using functional near-infrared spectroscopy,” J. Biomed. Opt.15(4), 047003 (2010). [CrossRef] [PubMed]
  23. C. M. Lu, Y. J. Zhang, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods186(2), 242–249 (2010). [CrossRef] [PubMed]
  24. B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage47(1), 148–156 (2009). [CrossRef] [PubMed]
  25. Z. F. Zaidi, “Gender differences in human brain: A review,” Open Anat. J.2, 37–55 (2010). [CrossRef]
  26. D. Tomasi and N. D. Volkow, “Gender differences in brain functional connectivity density,” Hum. Brain Mapp.33(4), 849–860 (2012). [CrossRef] [PubMed]
  27. G. Gong, Y. He, and A. C. Evans, “Brain connectivity: Gender makes a difference,” Neuroscientist17(5), 575–591 (2011). [CrossRef] [PubMed]
  28. N. Jaušovec and K. Jaušovec, “Resting brain activity: Differences between genders,” Neuropsychologia48(13), 3918–3925 (2010). [CrossRef] [PubMed]
  29. L. Kocsis, P. Herman, and A. Eke, “The modified Beer-Lambert law revisited,” Phys. Med. Biol.51(5), N91–N98 (2006). [CrossRef] [PubMed]
  30. P. H. Koh, D. E. Glaser, G. Flandin, S. Kiebel, B. Butterworth, A. Maki, D. T. Delpy, and C. E. Elwell, “Functional optical signal analysis: a software tool for near-infrared spectroscopy data processing incorporating statistical parametric mapping,” J. Biomed. Opt.12(6), 064010 (2007). [CrossRef] [PubMed]
  31. C.-C. Chuang, C.-M. Chen, Y.-S. Hsieh, T.-C. Liu, and C.-W. Sun, “Brain structure and spatial sensitivity profile assessing by near-infrared spectroscopy modeling based on 3D MRI data,” J. Biophotonics6(3), 267–274 (2013). [CrossRef] [PubMed]
  32. S. Lloyd-Fox, M. Papademetriou, M. K. Darboe, N. L. Everdell, R. Wegmuller, A. M. Prentice, S. E. Moore, and C. E. Elwell, “Functional near infrared spectroscopy (fNIRS) to assess cognitive function in infants in rural Africa,” Sci. Rep.4, 4740 (2014). [CrossRef] [PubMed]
  33. S. M. Coyle, T. E. Ward, and C. M. Markham, “Brain-computer interface using a simplified functional near-infrared spectroscopy system,” J. Neural Eng.4(3), 219–226 (2007). [CrossRef] [PubMed]
  34. Y. Hoshi and M. Tamura, “Dynamic multichannel near-infrared optical imaging of human brain activity,” J. Appl. Physiol.75(4), 1842–1846 (1993). [PubMed]
  35. M. Okamoto, H. Dan, K. Sakamoto, K. Takeo, K. Shimizu, S. Kohno, I. Oda, S. Isobe, T. Suzuki, K. Kohyama, and I. Dan, “Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping,” Neuroimage21(1), 99–111 (2004). [CrossRef] [PubMed]
  36. E. Bullmore and O. Sporns, “Complex brain networks: graph theoretical analysis of structural and functional systems,” Nat. Rev. Neurosci.10(3), 186–198 (2009). [CrossRef] [PubMed]
  37. A. A. Fingelkurts, A. A. Fingelkurts, and S. Kähkönen, “Functional connectivity in the brain-is it an elusive concept?” Neurosci. Biobehav. Rev.28(8), 827–836 (2005). [CrossRef] [PubMed]
  38. B. Horwitz, “The elusive concept of brain connectivity,” Neuroimage19(2), 466–470 (2003). [CrossRef] [PubMed]
  39. K. J. Friston, “Functional and effective connectivity in neuroimaging: A synthesis,” Hum. Brain Mapp.2(1-2), 56–78 (1994). [CrossRef]
  40. D. Tomasi and N. D. Volkow, “Laterality patterns of brain functional connectivity: gender effects,” Cereb. Cortex22(6), 1455–1462 (2012). [CrossRef] [PubMed]
  41. N. Shimoda, K. Takeda, I. Imai, J. Kaneko, and H. Kato, “Cerebral laterality differences in handedness: A mental rotation study with NIRS,” Neurosci. Lett.430(1), 43–47 (2008). [CrossRef] [PubMed]
  42. K. Takeda, Y. Gomi, I. Imai, N. Shimoda, M. Hiwatari, and H. Kato, “Shift of motor activation areas during recovery from hemiparesis after cerebral infarction: A longitudinal study with near-infrared spectroscopy,” Neurosci. Res.59(2), 136–144 (2007). [CrossRef] [PubMed]
  43. R. P. Kennan, D. Kim, A. Maki, H. Koizumi, and R. T. Constable, “Non-invasive assessment of language lateralization by transcranial near infrared optical topography and functional MRI,” Hum. Brain Mapp.16(3), 183–189 (2002). [CrossRef] [PubMed]
  44. N. F. Watson, C. Dodrill, D. Farrell, M. D. Holmes, and J. W. Miller, “Determination of language dominance with near-infrared spectroscopy: comparison with the intracarotid amobarbital procedure,” Seizure13(6), 399–402 (2004). [CrossRef] [PubMed]
  45. W. Koch, S. Teipel, S. Mueller, K. Buerger, A. L. W. Bokde, H. Hampel, U. Coates, M. Reiser, and T. Meindl, “Effects of aging on default mode network activity in resting state fMRI: Does the method of analysis matter?” Neuroimage51(1), 280–287 (2010). [CrossRef] [PubMed]
  46. M. Wallentin, “Putative sex differences in verbal abilities and language cortex: A critical review,” Brain Lang.108(3), 175–183 (2009). [CrossRef] [PubMed]
  47. E. M. Weiss, J. D. Ragland, C. M. Brensinger, W. B. Bilker, E. A. Deisenhammer, and M. Delazer, “Sex differences in clustering and switching in verbal fluency tasks,” J. Int. Neuropsychol. Soc.12(4), 502–509 (2006). [CrossRef] [PubMed]
  48. J. M. Andreano and L. Cahill, “Sex influences on the neurobiology of learning and memory,” Learn. Mem.16(4), 248–266 (2009). [CrossRef] [PubMed]
  49. H. Niu and Y. He, “Resting-State Functional Brain Connectivity: Lessons from Functional Near-Infrared Spectroscopy,” Neuroscientist20(2), 173–188 (2014). [CrossRef] [PubMed]
  50. Y. Hoshi, “Functional near-infrared spectroscopy: current status and future prospects,” J. Biomed. Opt.12(6), 062106 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited