OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 8 — Aug. 1, 2014
  • pp: 2517–2525

Fast wide-field photothermal and quantitative phase cell imaging with optical lock-in detection

Will J. Eldridge, Amihai Meiri, Adi Sheinfeld, Matthew T. Rinehart, and Adam Wax  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 8, pp. 2517-2525 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3187 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a fast, wide-field holography system for detecting photothermally excited gold nanospheres with combined quantitative phase imaging. An interferometric photothermal optical lock-in approach (POLI) is shown to improve SNR for detecting nanoparticles (NPs) on multiple substrates, including a monolayer of NPs on a silanized coverslip, and NPs bound to live cells. Furthermore, the set up allowed for co-registered quantitative phase imaging (QPI) to be acquired in an off-axis holographic set-up. An SNR of 103 was obtained for NP-tagging of epidermal growth factor receptor (EGFR) in live cells with a 3 second acquisition, while an SNR of 47 was seen for 20 ms acquisition. An analysis of improvements in SNR due to averaging multiple frames is presented, which suggest that residual photothermal signal can be a limiting factor. The combination of techniques allows for high resolution imaging of cell structure via QPI with the ability to identify receptor expression via POLI.

© 2014 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(170.1650) Medical optics and biotechnology : Coherence imaging
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: April 24, 2014
Revised Manuscript: June 5, 2014
Manuscript Accepted: June 24, 2014
Published: July 8, 2014

Will J. Eldridge, Amihai Meiri, Adi Sheinfeld, Matthew T. Rinehart, and Adam Wax, "Fast wide-field photothermal and quantitative phase cell imaging with optical lock-in detection," Biomed. Opt. Express 5, 2517-2525 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev.35(3), 209–217 (2006). [CrossRef] [PubMed]
  2. A. Wax, A. Meiri, S. Arumugam, and M. T. Rinehart, “Comparative review of interferometric detection of plasmonic nanoparticles,” Biomed. Opt. Express4(10), 2166–2178 (2013). [CrossRef] [PubMed]
  3. A. Curry, W. L. Hwang, and A. Wax, “Epi-illumination through the microscope objective applied to darkfield imaging and microspectroscopy of nanoparticle interaction with cells in culture,” Opt. Express14(14), 6535–6542 (2006). [CrossRef] [PubMed]
  4. N. A. Turko, A. Peled, and N. T. Shaked, “Wide-field interferometric phase microscopy with molecular specificity using plasmonic nanoparticles,” J. Biomed. Opt.18(11), 111414 (2013).
  5. C. Pache, N. L. Bocchio, A. Bouwens, M. Villiger, C. Berclaz, J. Goulley, M. I. Gibson, C. Santschi, and T. Lasser, “Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in Optical Coherence Microscopy,” Opt. Express20(19), 21385–21399 (2012). [CrossRef] [PubMed]
  6. S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett.93(25), 257402 (2004). [CrossRef] [PubMed]
  7. A. Gaiduk, P. V. Ruijgrok, M. Yorulmaz, and M. Orrit, “Detection limits in photothermal microscopy,” Chem. Sci.1(3), 343–350 (2010). [CrossRef]
  8. E. Absil, G. Tessier, M. Gross, M. Atlan, N. Warnasooriya, S. Suck, M. Coppey-Moisan, and D. Fournier, “Photothermal heterodyne holography of gold nanoparticles,” Opt. Express18(2), 780–786 (2010). [CrossRef] [PubMed]
  9. D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science297(5584), 1160–1163 (2002). [CrossRef] [PubMed]
  10. A. Datta, Biological and Bioenvironmental Heat and Mass Transfer (Marcel Dekker, 2002).
  11. J. E. Mark, “Poly(dimethylsiloxane),” in Polymer Data Handbook (Oxford University Press, 1998).
  12. J. D. Hoffman, Numerical Methods for Engineers and Scientists, 2nd ed. (McGraw-Hill, 2001).
  13. K. Seekell, M. J. Crow, S. Marinakos, J. Ostrander, A. Chilkoti, and A. Wax, “Hyperspectral molecular imaging of multiple receptors using immunolabeled plasmonic nanoparticles,” J. Biomed. Opt.16(11), 116003 (2011). [CrossRef] [PubMed]
  14. K. Seekell, H. Price, S. Marinakos, and A. Wax, “Optimization of immunolabeled plasmonic nanoparticles for cell surface receptor analysis,” Methods56(2), 310–316 (2012). [CrossRef] [PubMed]
  15. M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett.8(10), 3461–3467 (2008). [CrossRef] [PubMed]
  16. A.C. Curry, M.J. Crow, and A. Wax, “Molecular imaging of epidermal growth factor receptor in live cells with refractive index sensitivity using dark-field microspectroscopy and immunotargeted nanoparticles,” J. Biomed. Opt.13(1), 014022 (2008).
  17. M. J. Crow, G. Grant, J. M. Provenzale, and A. Wax, “Molecular imaging and quantitative measurement of epidermal growth factor receptor expression in live cancer cells using immunolabeled gold nanoparticles,” AJR Am. J. Roentgenol.192(4), 1021–1028 (2009). [CrossRef] [PubMed]
  18. M. J. Crow, K. Seekell, J. H. Ostrander, and A. Wax, “Monitoring of receptor dimerization using plasmonic coupling of gold nanoparticles,” ACS Nano5(11), 8532–8540 (2011). [CrossRef] [PubMed]
  19. M. J. Crow, S. M. Marinakos, J. M. Cook, A. Chilkoti, and A. Wax, “Plasmonic flow cytometry by immunolabeled nanorods,” Cytometry A79A(1), 57–65 (2011). [CrossRef] [PubMed]
  20. M. Atlan, M. Gross, P. Desbiolles, É. Absil, G. Tessier, and M. Coppey-Moisan, “Heterodyne holographic microscopy of gold particles,” Opt. Lett.33(5), 500–502 (2008). [CrossRef] [PubMed]
  21. A. Albanese, A. K. Lam, E. A. Sykes, J. V. Rocheleau, and W. C. W. Chan, “Tumour-on-a-chip provides an optical window into nanoparticle tissue transport,” Nat. Comm.4, 1–8 (2013).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited