OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 8 — Aug. 1, 2014
  • pp: 2526–2536

Nonlinear structured-illumination enhanced temporal focusing multiphoton excitation microscopy with a digital micromirror device

Li-Chung Cheng, Chi-Hsiang Lien, Yong Da Sie, Yvonne Yuling Hu, Chun-Yu Lin, Fan-Ching Chien, Chris Xu, Chen Yuan Dong, and Shean-Jen Chen  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 8, pp. 2526-2536 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1339 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this study, the light diffraction of temporal focusing multiphoton excitation microscopy (TFMPEM) and the excitation patterning of nonlinear structured-illumination microscopy (NSIM) can be simultaneously and accurately implemented via a single high-resolution digital micromirror device. The lateral and axial spatial resolutions of the TFMPEM are remarkably improved through the second-order NSIM and projected structured light, respectively. The experimental results demonstrate that the lateral and axial resolutions are enhanced from 397 nm to 168 nm (2.4-fold) and from 2.33 μm to 1.22 μm (1.9-fold), respectively, in full width at the half maximum. Furthermore, a three-dimensionally rendered image of a cytoskeleton cell featuring ~25 nm microtubules is improved, with other microtubules at a distance near the lateral resolution of 168 nm also able to be distinguished.

© 2014 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(190.4180) Nonlinear optics : Multiphoton processes
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:

Original Manuscript: May 13, 2014
Revised Manuscript: June 18, 2014
Manuscript Accepted: July 3, 2014
Published: July 8, 2014

Li-Chung Cheng, Chi-Hsiang Lien, Yong Da Sie, Yvonne Yuling Hu, Chun-Yu Lin, Fan-Ching Chien, Chris Xu, Chen Yuan Dong, and Shean-Jen Chen, "Nonlinear structured-illumination enhanced temporal focusing multiphoton excitation microscopy with a digital micromirror device," Biomed. Opt. Express 5, 2526-2536 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. R. Masters and P. T. C. So, Handbook of Biomedical Nonlinear Optical Microscopy (Oxford, 2008).
  2. E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics7(2), 93–101 (2013). [CrossRef] [PubMed]
  3. D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express13(5), 1468–1476 (2005). [CrossRef] [PubMed]
  4. G. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express13(6), 2153–2159 (2005). [CrossRef] [PubMed]
  5. A. Vaziri, J. Tang, H. Shroff, and C. V. Shank, “Multilayer three-dimensional super resolution imaging of thick biological samples,” Proc. Natl. Acad. Sci. U.S.A.105(51), 20221–20226 (2008). [CrossRef] [PubMed]
  6. E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods7(10), 848–854 (2010). [CrossRef] [PubMed]
  7. D. Kim and P. T. C. So, “High-throughput three-dimensional lithographic microfabrication,” Opt. Lett.35(10), 1602–1604 (2010). [CrossRef] [PubMed]
  8. O. D. Therrien, B. Aubé, S. Pagès, P. D. Koninck, and D. Côté, “Wide-field multiphoton imaging of cellular dynamics in thick tissue by temporal focusing and patterned illumination,” Biomed. Opt. Express2(3), 696–704 (2011). [CrossRef] [PubMed]
  9. L.-C. Cheng, C.-Y. Chang, C.-Y. Lin, K.-C. Cho, W.-C. Yen, N.-S. Chang, C. Xu, C. Y. Dong, and S.-J. Chen, “Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning,” Opt. Express20(8), 8939–8948 (2012). [CrossRef] [PubMed]
  10. J.-Y. Yu, C.-H. Kuo, D. B. Holland, Y. Chen, M. Ouyang, G. A. Blake, R. Zadoyan, and C.-L. Guo, “Wide-field optical sectioning for live-tissue imaging by plane-projection multiphoton microscopy,” J. Biomed. Opt.16(11), 116009 (2011). [CrossRef] [PubMed]
  11. H. Dana and S. Shoham, “Remotely scanned multiphoton temporal focusing by axial grism scanning,” Opt. Lett.37(14), 2913–2915 (2012). [CrossRef] [PubMed]
  12. P. T. C. So, E. Y. S. Yew, and C. Rowlands, “High-Throughput Nonlinear Optical Microscopy,” Biophys. J.105(12), 2641–2654 (2013). [CrossRef] [PubMed]
  13. M. A. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett.22(24), 1905–1907 (1997). [CrossRef] [PubMed]
  14. D. Lim, K. K. Chu, and J. Mertz, “Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy,” Opt. Lett.33(16), 1819–1821 (2008). [CrossRef] [PubMed]
  15. T. N. Ford, D. Lim, and J. Mertz, “Fast optically sectioned fluorescence HiLo endomicroscopy,” J. Biomed. Opt.17(2), 021105 (2012). [CrossRef] [PubMed]
  16. J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Methods8(10), 811–819 (2011). [CrossRef] [PubMed]
  17. H. Choi, E. Y. S. Yew, B. Hallacoglu, S. Fantini, C. J. R. Sheppard, and P. T. C. So, “Improvement of axial resolution and contrast in temporally focused widefield two-photon microscopy with structured light illumination,” Biomed. Opt. Express4(7), 995–1005 (2013). [CrossRef] [PubMed]
  18. K. Weisshart, T. Dertinger, T. Kalkbrenner, I. Kleppe, and M. Kempe, “Super-resolution microscopy heads towards 3D dynamics,” Adv. Opt. Technol.2, 211–231 (2013).
  19. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  20. S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91(11), 4258–4272 (2006). [CrossRef] [PubMed]
  21. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006). [CrossRef] [PubMed]
  22. T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI),” Proc. Natl. Acad. Sci. U.S.A.106(52), 22287–22292 (2009). [CrossRef] [PubMed]
  23. S. Geissbuehler, C. Dellagiacoma, and T. Lasser, “Comparison between SOFI and STORM,” Biomed. Opt. Express2(3), 408–420 (2011). [CrossRef] [PubMed]
  24. M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000). [CrossRef] [PubMed]
  25. M. G. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” Proc. SPIE3919, 141–150 (2000). [CrossRef]
  26. M. G. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A.102(37), 13081–13086 (2005). [CrossRef] [PubMed]
  27. M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J.94(12), 4957–4970 (2008). [CrossRef] [PubMed]
  28. K. Isobe, T. Takeda, K. Mochizuki, Q. Song, A. Suda, F. Kannari, H. Kawano, A. Kumagai, A. Miyawaki, and K. Midorikawa, “Enhancement of lateral resolution and optical sectioning capability of two-photon fluorescence microscopy by combining temporal-focusing with structured illumination,” Biomed. Opt. Express4(11), 2396–2410 (2013). [CrossRef] [PubMed]
  29. P. Zhu, O. Fajardo, J. Shum, Y.-P. Zhang Schärer, and R. W. Friedrich, “High-resolution optical control of spatiotemporal neuronal activity patterns in zebrafish using a digital micromirror device,” Nat. Protoc.7(7), 1410–1425 (2012). [CrossRef] [PubMed]
  30. Y.-C. Li, L.-C. Cheng, C.-Y. Chang, C.-H. Lien, P. J. Campagnola, and S.-J. Chen, “Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation,” Opt. Express20(17), 19030–19038 (2012). [CrossRef] [PubMed]
  31. J. N. Yih, Y. Y. Hu, Y. D. Sie, L.-C. Cheng, C. H. Lien, and S.-J. Chen, “Temporal focusing-based multiphoton excitation microscopy via digital micromirror device,” Opt. Lett.39(11), 3134–3137 (2014). [CrossRef] [PubMed]
  32. Y.-C. Li, L.-C. Cheng, C.-Y. Chang, C.-Y. Lin, N.-S. Chang, P. J. Campagnola, C. Y. Dong, and S.-J. Chen, “High-throughput fabrication of gray-level bio-microstructures via temporal focusing excitation and laser pulse control,” J. Biomed. Opt.18(7), 075004 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: MOV (283 KB)     
» Media 2: MOV (277 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited