OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 8 — Aug. 1, 2014
  • pp: 2620–2634

In vivo imaging of functional microvasculature within tissue beds of oral and nasal cavities by swept-source optical coherence tomography with a forward/side-viewing probe

Woo June Choi and Ruikang K. Wang  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 8, pp. 2620-2634 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1891 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report three-dimensional (3D) imaging of microcirculation within human cavity tissues in vivo using a high-speed swept-source optical coherence tomography (SS-OCT) at 1300 nm with a modified probe interface. Volumetric structural OCT images of the inner tissues of oral and nasal cavities are acquired with a field of view of 2 mm × 2 mm. Two types of disposable and detachable probe attachments are devised and applied to the port of the imaging probe of OCT system, enabling forward and side imaging scans for selective and easy access to specific cavity tissue sites. Blood perfusion is mapped with OCT-based microangiography from 3D structural OCT images, in which a novel vessel extraction algorithm is used to decouple dynamic light scattering signals, due to moving blood cells, from the background scattering signals due to static tissue elements. Characteristic tissue anatomy and microvessel architectures of various cavity tissue regions of a healthy human volunteer are identified with the 3D OCT images and the corresponding 3D vascular perfusion maps at a level approaching capillary resolution. The initial finding suggests that the proposed method may be engineered into a promising tool for evaluating and monitoring tissue microcirculation and its alteration within a wide-range of cavity tissues in the patients with various pathological conditions.

© 2014 Optical Society of America

OCIS Codes
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
Cardiovascular Applications

Original Manuscript: May 13, 2014
Revised Manuscript: July 6, 2014
Manuscript Accepted: July 9, 2014
Published: July 15, 2014

Woo June Choi and Ruikang K. Wang, "In vivo imaging of functional microvasculature within tissue beds of oral and nasal cavities by swept-source optical coherence tomography with a forward/side-viewing probe," Biomed. Opt. Express 5, 2620-2634 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. American Cancer Society. Cancer Facts & Figs.2014.
  2. M.-T. Tsai, H.-C. Lee, C.-K. Lee, C.-H. Yu, H.-M. Chen, C.-P. Chiang, C.-C. Chang, Y.-M. Wang, and C. C. Yang, “Effective indicators for diagnosis of oral cancer using optical coherence tomography,” Opt. Express16(20), 15847–15862 (2008). [CrossRef] [PubMed]
  3. R. Byakodi, S. Byakodi, S. Hiremath, J. Byakodi, S. Adaki, K. Marathe, and P. Mahind, “Oral cancer in India: an epidemiologic and clinical review,” J. Community Health37(2), 316–319 (2012). [CrossRef] [PubMed]
  4. M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt.49(16), D30–D61 (2010). [CrossRef] [PubMed]
  5. A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt.12(5), 051403 (2007). [CrossRef] [PubMed]
  6. S. Marschall, B. Sander, M. Mogensen, T. M. Jørgensen, and P. E. Andersen, “Optical coherence tomography-current technology and applications in clinical and biomedical research,” Anal. Bioanal. Chem.400(9), 2699–2720 (2011). [CrossRef] [PubMed]
  7. P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005). [CrossRef]
  8. C. Balas, “Review of biomedical optical imaging–a powerful, non-invasive, non-ionizing technology for improving in vivo diagnosis,” Meas. Sci. Technol.20(10), 104020 (2009). [CrossRef]
  9. S. Tang, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Combined multiphoton microscopy and optical coherence tomography using a 12-fs broadband source,” J. Biomed. Opt.11(2), 020502 (2006). [CrossRef] [PubMed]
  10. L. An, P. Li, T. T. Shen, and R. K. Wang, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second,” Biomed. Opt. Express2(10), 2770–2783 (2011). [CrossRef] [PubMed]
  11. L. An, P. Li, G. Lan, D. Malchow, and R. K. Wang, “High-resolution 1050 nm spectral domain retinal optical coherence tomography at 120 kHz A-scan rate with 6.1 mm imaging depth,” Biomed. Opt. Express4(2), 245–259 (2013). [CrossRef] [PubMed]
  12. S. Ishida, N. Nishizawa, T. Ohta, and K. Itoh, “Ultrahigh-resolution optical coherence tomography in 1.7 µm region with fiber laser supercontinuum in low-water-absorption samples,” Appl. Phys. Express4(5), 052501 (2011). [CrossRef]
  13. K. Zhang and J. U. Kang, “Real-time intraoperative 4D full-range FD-OCT based on the dual graphics processing units architecture for microsurgery guidance,” Biomed. Opt. Express2(4), 764–770 (2011). [CrossRef] [PubMed]
  14. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett.28(20), 1981–1983 (2003). [CrossRef] [PubMed]
  15. T.-H. Tsai, B. Potsaid, Y. K. Tao, V. Jayaraman, J. Jiang, P. J. S. Heim, M. F. Kraus, C. Zhou, J. Hornegger, H. Mashimo, A. E. Cable, and J. G. Fujimoto, “Ultrahigh speed endoscopic optical coherence tomography using micromotor imaging catheter and VCSEL technology,” Biomed. Opt. Express4(7), 1119–1132 (2013). [CrossRef] [PubMed]
  16. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003). [CrossRef] [PubMed]
  17. J. M. Ridgway, W. B. Armstrong, S. Guo, U. Mahmood, J. Su, R. P. Jackson, T. Shibuya, R. L. Crumley, M. Gu, Z. Chen, and B. J.-F. Wong, “In vivo optical coherence tomography of the human oral cavity and oropharynx,” Arch. Otolaryngol. Head Neck Surg.132(10), 1074–1081 (2006). [CrossRef] [PubMed]
  18. C.-K. Lee, T.-T. Chi, C.-T. Wu, M.-T. Tsai, C.-P. Chiang, and C. C. Yang, “Diagnosis of oral precancer with optical coherence tomography,” Biomed. Opt. Express3(7), 1632–1646 (2012). [CrossRef] [PubMed]
  19. I. Grulkowski, J. K. Nowak, K. Karnowski, P. Zebryk, M. Puszczewicz, J. Walkowiak, and M. Wojtkowski, “Quantitative assessment of oral mucosa and labial minor salivary glands in patients with Sjögren’s syndrome using swept source OCT,” Biomed. Opt. Express5(1), 259–274 (2014). [CrossRef] [PubMed]
  20. P. Wilder-Smith, K. Lee, S. Guo, J. Zhang, K. Osann, Z. Chen, and D. Messadi, “In vivo diagnosis of oral dysplasia and malignancy using optical coherence tomography: preliminary studies in 50 patients,” Lasers Surg. Med.41(5), 353–357 (2009). [CrossRef] [PubMed]
  21. U. Mahmood, J. Ridgway, R. Jackson, S. Guo, J. Su, W. Armstrong, T. Shibuya, R. Crumley, Z. Chen, and B. Wong, “In vivo optical coherence tomography of the nasal mucosa,” Am. J. Rhinol.20(2), 155–159 (2006). [PubMed]
  22. S.-H. Kim, N. H. Cho, K. Kim, J. S. Lee, B. S. Koo, J. H. Kim, J. H. Chang, and E. C. Choi, “Correlations of oral tongue cancer invasion with matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF) expression,” J. Surg. Oncol.93(4), 330–337 (2006). [CrossRef] [PubMed]
  23. P. H. Corrêa, L. C. C. Nunes, A. C. B. R. Johann, M. C. Aguiar, R. S. Gomez, and R. A. Mesquita, “Prevalence of oral hemangioma, vascular malformation and varix in a Brazilian population,” Braz. Oral Res.21(1), 40–45 (2007). [CrossRef] [PubMed]
  24. M. Astekar, A. Joshi, G. Ramesh, and R. Metgud, “Expression of vascular endothelial growth factor and microvessel density in oral tumorigenesis,” J. Oral Maxillofac. Pathol.16(1), 22–26 (2012). [CrossRef] [PubMed]
  25. Y.-S. Fu and K. H. Perzin, “Non-epithelial tumors of the nasal cavity, paranasal sinuses, and nasopharynx: A clinicopathologic study. I. General Features and Vascular Tumors,” Cancer33(5), 1275–1288 (1974). [CrossRef] [PubMed]
  26. P. Wilder-Smith, M. J. Hammer-Wilson, J. Zhang, Q. Wang, K. Osann, Z. Chen, H. Wigdor, J. Schwartz, and J. Epstein, “In vivo imaging of oral mucositis in an animal model using optical coherence tomography and optical Doppler tomography,” Clin. Cancer Res.13(8), 2449–2454 (2007). [CrossRef] [PubMed]
  27. L. L. Otis, D. Piao, C. W. Gibson, and Q. Zhu, “Quantifying labial blood flow using optical Doppler tomography,” Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.98(2), 189–194 (2004). [CrossRef] [PubMed]
  28. S. G. Proskurin, Y. He, and R. K. Wang, “Determination of flow velocity vector based on Doppler shift and spectrum broadening with optical coherence tomography,” Opt. Lett.28(14), 1227–1229 (2003). [CrossRef] [PubMed]
  29. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett.33(13), 1530–1532 (2008). [CrossRef] [PubMed]
  30. H. C. Hendargo, R. P. McNabb, A.-H. Dhalla, N. Shepherd, and J. A. Izatt, “Doppler velocity detection limitations in spectrometer-based versus swept-source optical coherence tomography,” Biomed. Opt. Express2(8), 2175–2188 (2011). [CrossRef] [PubMed]
  31. H. Ren, Y. Wang, J. S. Nelson, and Z. Chen, “Power optical Doppler tomography imaging of blood vessel in human skin and M-mode Doppler imaging of blood flow in chick chrioallantoic membrane,” Proc. SPIE4956, 225–231 (2003). [CrossRef]
  32. X. Li, and H. Ren, “Clutter rejection filters for optical Doppler tomography,” US Patent 20070216908.
  33. H. Ren, T. Sun, D. J. MacDonald, M. J. Cobb, and X. Li, “Real-time in vivo blood-flow imaging by moving-scatterer-sensitive spectral-domain optical Doppler tomography,” Opt. Lett.31(7), 927–929 (2006). [CrossRef] [PubMed]
  34. H. Ren and X. Li, “Clutter rejection filters for optical Doppler tomography,” Opt. Express14(13), 6103–6112 (2006). [CrossRef] [PubMed]
  35. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express15(7), 4083–4097 (2007). [CrossRef] [PubMed]
  36. R. K. Wang and S. Hurst, “Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by Optical Micro-AngioGraphy at 1.3 mum wavelength,” Opt. Express15(18), 11402–11412 (2007). [CrossRef] [PubMed]
  37. L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express18(8), 8220–8228 (2010). [CrossRef] [PubMed]
  38. R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett.35(9), 1467–1469 (2010). [CrossRef] [PubMed]
  39. M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. H. Luk, A. Mariampillai, and V. X. D. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt.18(5), 050901 (2013). [CrossRef] [PubMed]
  40. J. Enfield, E. Jonathan, and M. Leahy, “In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT),” Biomed. Opt. Express2(5), 1184–1193 (2011). [CrossRef] [PubMed]
  41. C. Blatter, J. Weingast, A. Alex, B. Grajciar, W. Wieser, W. Drexler, R. Huber, and R. A. Leitgeb, “In situ structural and microangiographic assessment of human skin lesions with high-speed OCT,” Biomed. Opt. Express3(10), 2636–2646 (2012). [CrossRef] [PubMed]
  42. Y. Watanabe, Y. Takahashi, and H. Numazawa, “Graphics processing unit accelerated intensity-based optical coherence tomography angiography using differential frames with real-time motion correction,” J. Biomed. Opt.19(2), 021105 (2014). [CrossRef] [PubMed]
  43. B. Davoudi, A. Lindenmaier, B. A. Standish, G. Allo, K. Bizheva, and A. Vitkin, “Noninvasive in vivo structural and vascular imaging of human oral tissues with spectral domain optical coherence tomography,” Biomed. Opt. Express3(5), 826–839 (2012). [CrossRef] [PubMed]
  44. B. Davoudi, M. Morrison, K. Bizheva, V. X. D. Yang, R. Dinniwell, W. Levin, and I. A. Vitkin, “Optical coherence tomography platform for microvascular imaging and quantification: initial experience in late oral radiation toxicity patients,” J. Biomed. Opt.18(7), 076008 (2013). [CrossRef] [PubMed]
  45. W. J. Choi, R. Reif, S. Yousefi, and R. K. Wang, “Improved microcirculation imaging of human skin in vivo using optical microangiography with a correlation mapping mask,” J. Biomed. Opt.19(3), 036010 (2014). [CrossRef] [PubMed]
  46. W. J. Choi, H. Wang, and R. K. Wang, “Optical coherence tomography microangiography for monitoring the response of vascular perfusion to external pressure on human skin tissue,” J. Biomed. Opt.19(5), 056003 (2014). [CrossRef] [PubMed]
  47. http://www.thorlabs.us/newgrouppage9.cfm?objectgroup_id=6473&pn=OCS1310V1 .
  48. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express3(11), 2733–2751 (2012). [CrossRef] [PubMed]
  49. Laser Institute of America, American National Standard for Safe Use of Lasers ANSI Z136.1-2000,” American National Standards Institute Inc., New York, NY (2000).
  50. J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express17(24), 22190–22200 (2009). [CrossRef] [PubMed]
  51. G. A. Scardina and P. Messina, “Hashimotoʼs thyroiditis: lingual and labial capillary microcirculation in patients affected by macroglossia,” Int. J. Morphol.25(2), 411–416 (2007). [CrossRef]
  52. R. Djaberi, J. D. Schuijf, E. J. de Koning, D. C. Wijewickrama, A. M. Pereira, J. W. Smit, L. J. Kroft, A. Roos, J. J. Bax, T. J. Rabelink, and J. W. Jukema, “Non-invasive assessment of microcirculation by sidestream dark field imaging as a marker of coronary artery disease in diabetes,” Diab. Vasc. Dis. Res.10(2), 123–134 (2013). [CrossRef] [PubMed]
  53. R. V. Krstič, Human Microscopic Anatomy: An Atlas for Students of Medicine and Biology (Springer-Verlag, Berlin, 1991).
  54. E. A. Naumova, T. Dierkes, J. Sprang, and W. H. Arnold, “The oral mucosal surface and blood vessels,” Head Face Med.9(1), 8 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MPG (8928 KB)     
» Media 2: MPG (6750 KB)     
» Media 3: MPG (10641 KB)     
» Media 4: MPG (5992 KB)     
» Media 5: MPG (5153 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited