OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 8 — Aug. 1, 2014
  • pp: 2635–2647

High resolution three-dimensional photoacoustic tomography with CCD-camera based ultrasound detection

Robert Nuster, Paul Slezak, and Guenther Paltauf  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 8, pp. 2635-2647 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3182 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A photoacoustic tomograph based on optical ultrasound detection is demonstrated, which is capable of high resolution real-time projection imaging and fast three-dimensional (3D) imaging. Snapshots of the pressure field outside the imaged object are taken at defined delay times after photoacoustic excitation by use of a charge coupled device (CCD) camera in combination with an optical phase contrast method. From the obtained wave patterns photoacoustic projection images are reconstructed using a back propagation Fourier domain reconstruction algorithm. Applying the inverse Radon transform to a set of projections recorded over a half rotation of the sample provides 3D photoacoustic tomography images in less than one minute with a resolution below 100 µm. The sensitivity of the device was experimentally determined to be 5.1 kPa over a projection length of 1 mm. In vivo images of the vasculature of a mouse demonstrate the potential of the developed method for biomedical applications.

© 2014 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5120) Medical optics and biotechnology : Photoacoustic imaging
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Photoacoustic Imaging and Spectroscopy

Original Manuscript: May 20, 2014
Revised Manuscript: July 10, 2014
Manuscript Accepted: July 12, 2014
Published: July 16, 2014

Robert Nuster, Paul Slezak, and Guenther Paltauf, "High resolution three-dimensional photoacoustic tomography with CCD-camera based ultrasound detection," Biomed. Opt. Express 5, 2635-2647 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. H. Xu and L. V. Wang, “Photoacoustic Imaging in Biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006). [CrossRef]
  2. P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011). [CrossRef] [PubMed]
  3. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012). [CrossRef] [PubMed]
  4. E. Z. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008). [CrossRef] [PubMed]
  5. J. Laufer, P. Johnson, E. Z. Zhang, B. Treeby, B. Cox, B. Pedley, and P. Beard, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt. 17(5), 056016 (2012). [CrossRef] [PubMed]
  6. R. Nuster, M. Holotta, C. Kremser, H. Grossauer, P. Burgholzer, and G. Paltauf, “Photoacoustic microtomography using optical interferometric detection,” J. Biomed. Opt. 15(2), 021307 (2010). [CrossRef] [PubMed]
  7. Y. Hou, S. W. Huang, S. Ashkenazi, R. Witte, and M. O’Donnell, “Thin Polymer Etalon Arrays for High-Resolution Photoacoustic Imaging,” J. Biomed. Opt. 13(6), 064033 (2008). [CrossRef] [PubMed]
  8. A. Hochreiner, J. Bauer-Marschallinger, P. Burgholzer, B. Jakoby, and T. Berer, “Non-contact photoacoustic imaging using a fiber based interferometer with optical amplification,” Biomed. Opt. Express 4(11), 2322–2331 (2013). [CrossRef] [PubMed]
  9. G. Rousseau, A. Blouin, and J. P. Monchalin, “Non-contact photoacoustic tomography and ultrasonography for tissue imaging,” Biomed. Opt. Express 3(1), 16–25 (2012). [CrossRef] [PubMed]
  10. A. Maxwell, S. Huang, T. Ling, J. S. Kim, S. Ashkenazi, and L. J. Guo, “Polymer Microring Resonators for High-Frequency Ultrasound Detection and Imaging,” IEEE J. Sel. Top. Quantum Electron. 14, 191–197 (2008).
  11. K. P. Köstli, M. Frenz, H. P. Weber, G. Paltauf, and H. Schmidt-Kloiber, “Optoacoustic tomography: time-gated measurement of pressure distributions and image reconstruction,” Appl. Opt. 40(22), 3800–3809 (2001). [CrossRef] [PubMed]
  12. G. Paltauf, H. Schmidt-Kloiber, K. P. Koestli, M. Frenz, and H. P. Weber, “Optoacoustic imaging using two-dimensional ultrasonic detection” in A. A. Oraevsky, ed. (SPIE, 2000).
  13. M. Lamont and P. C. Beard, “2D imaging of ultrasound fields using a CCD array to detect the output of a Fabry Perot Polymer film sensor,” Electron. Lett. 42(3), 187–189 (2006). [CrossRef]
  14. J. J. Niederhauser, D. Frauchiger, H. P. Weber, and M. Frenz, “Real-Time Optoacoustic Imaging Using a Schlieren Transducer,” Appl. Phys. Lett. 81(4), 571–573 (2002). [CrossRef]
  15. J. J. Niederhauser, M. Jaeger, and M. Frenz, “Real-Time Three-Dimensional Optoacoustic Imaging Using an Acoustic Lens System,” Appl. Phys. Lett. 85(5), 846–848 (2004). [CrossRef]
  16. R. Nuster, G. Zangerl, M. Haltmeier, and G. Paltauf, “Full field detection in photoacoustic tomography,” Opt. Express 18(6), 6288–6299 (2010). [CrossRef] [PubMed]
  17. T. A. Pitts, A. Sagers, and J. F. Greenleaf, “Optical Phase Contrast Measurement of Ultrasonic Fields,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(6), 1686–1694 (2001). [CrossRef] [PubMed]
  18. E. K. Reichel and B. G. Zagar, “Phase contrast method for measuring ultrasonic fields,” IEEE Trans. Instrum. Meas. 55(4), 1356–1361 (2006). [CrossRef]
  19. P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(9), 1577–1583 (2005). [CrossRef] [PubMed]
  20. G. Paltauf, R. Nuster, M. Haltmeier, and P. Burgholzer, “Photoacoustic tomography using a Mach-Zehnder interferometer as an acoustic line detector,” Appl. Opt. 46(16), 3352–3358 (2007). [CrossRef] [PubMed]
  21. G. Paltauf, R. Nuster, M. Haltmeier, and P. Burgholzer, “Photoacoustic Tomography with Integrating Area and Line Detectors,” in Photoacoustic Imaging and Spectroscopy, L. V. Wang, ed. (CRC Press Taylor & Francis Group, 2009), pp. 251–263.
  22. G. S. Settles, Schlieren and Shadowgraph Techniques (Springer, 2001).
  23. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).
  24. R. Nuster, S. Gratt, K. Passler, H. Grün, T. Berer, P. Burgholzer, and G. Paltauf, Comparison of optical and piezoelectric integrating line detectors” in Anonymous (SPIE, 2009).
  25. E. Z. Zhang and P. C. Beard, “Ultra high sensitivity, wideband Fabry Perot ultrasound sensors as alternative to piezoelectric PVDF transducers for biomedical photoacoustic detection” in Proc. SPIE 5320, ed., 2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited