OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 8 — Aug. 1, 2014
  • pp: 2648–2661

Calcium imaging at kHz frame rates resolves millisecond timing in neuronal circuits and varicosities

Michiel A. Martens, Werend Boesmans, and Pieter Vanden Berghe  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 8, pp. 2648-2661 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (7766 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have configured a widefield fast imaging system that allows imaging at 1000 frames per second (512x512 pixels). The system was extended with custom processing tools including a time correlation method to facilitate the analysis of static subcellular compartments (e.g. neuronal varicosities) with enhanced contrast, as well as a dynamic intensity processing (DIP) algorithm that aids in data size reduction and fast visualization and interpretation of timing and directionality in neuronal circuits. This system, together with our custom developed processing tools enables efficient detection of fast physiological events, such as action potential dependent calcium steps. We show, using a specific blocker of nerve communication, that with this setup it is possible to discriminate between a pre and post synaptic event in an all optical way.

© 2014 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(330.6790) Vision, color, and visual optics : Temporal discrimination
(100.0118) Image processing : Imaging ultrafast phenomena

ToC Category:
Image Processing

Original Manuscript: May 30, 2014
Revised Manuscript: July 10, 2014
Manuscript Accepted: July 11, 2014
Published: July 16, 2014

Michiel A. Martens, Werend Boesmans, and Pieter Vanden Berghe, "Calcium imaging at kHz frame rates resolves millisecond timing in neuronal circuits and varicosities," Biomed. Opt. Express 5, 2648-2661 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Sakmann and E. Neher, “Patch clamp techniques for studying ionic channels in excitable membranes,” Annu. Rev. Physiol.46(1), 455–472 (1984). [CrossRef] [PubMed]
  2. G. Kim and K. Kandler, “Paired recordings from distant inhibitory neuron pairs by a sequential scanning approach,” J. Neurosci. Methods200(2), 185–189 (2011). [CrossRef] [PubMed]
  3. J. R. P. Geiger, J. Lübke, A. Roth, M. Frotscher, and P. Jonas, “Submillisecond AMPA receptor-mediated signaling at a principal neuron-interneuron synapse,” Neuron18(6), 1009–1023 (1997). [CrossRef] [PubMed]
  4. Y. Y. Ma and D. A. Prince, “Functional alterations in GABAergic fast-spiking interneurons in chronically injured epileptogenic neocortex,” Neurobiol. Dis.47(1), 102–113 (2012). [CrossRef] [PubMed]
  5. J. B. Pawley, Handbook of Biological Confocal Microscopy, 2nd ed., The language of science (Plenum Press, New York, 1995), pp. xxiii, 632, 634 p. of plates.
  6. R. Gräf, J. Rietdorf, and T. Zimmermann, “Live cell spinning disk microscopy,” Adv. Biochem. Eng. Biotechnol.95, 57–75 (2005). [CrossRef] [PubMed]
  7. E. Wang, C. M. Babbey, and K. W. Dunn, “Performance comparison between the high-speed Yokogawa spinning disc confocal system and single-point scanning confocal systems,” J. Microsc.218(2), 148–159 (2005). [CrossRef] [PubMed]
  8. K. Michel, M. Michaelis, G. Mazzuoli, K. Mueller, P. Vanden Berghe, and M. Schemann, “Fast calcium and voltage-sensitive dye imaging in enteric neurones reveal calcium peaks associated with single action potential discharge,” J. Physiol.589(Pt 24), 5941–5947 (2011). [PubMed]
  9. A. L. Obaid, M. E. Nelson, J. Lindstrom, and B. M. Salzberg, “Optical studies of nicotinic acetylcholine receptor subtypes in the guinea-pig enteric nervous system,” J. Exp. Biol.208(15), 2981–3001 (2005). [CrossRef] [PubMed]
  10. K. Holthoff, D. Zecevic, and A. Konnerth, “Rapid time course of action potentials in spines and remote dendrites of mouse visual cortex neurons,” J. Physiol.588(7), 1085–1096 (2010). [CrossRef] [PubMed]
  11. G. Li, R. Stewart, M. Canepari, and M. Capogna, “Firing of hippocampal neurogliaform cells induces suppression of synaptic inhibition,” J. Neurosci.34(4), 1280–1292 (2014). [CrossRef] [PubMed]
  12. R. Davies, J. Graham, and M. Canepari, “Light sources and cameras for standard in vitro membrane potential and high-speed ion imaging,” J. Microsc.251(1), 5–13 (2013). [CrossRef] [PubMed]
  13. M. Neunlist, S. Peters, and M. Schemann, “Multisite optical recording of excitability in the enteric nervous system,” Neurogastroenterol. Motil.11(5), 393–402 (1999). [CrossRef] [PubMed]
  14. D. Zecević, J. Y. Wu, L. B. Cohen, J. A. London, H. P. Höpp, and C. X. Falk, “Hundreds of neurons in the Aplysia abdominal ganglion are active during the gill-withdrawal reflex,” J. Neurosci.9(10), 3681–3689 (1989). [PubMed]
  15. A. L. Obaid, T. Koyano, J. Lindstrom, T. Sakai, and B. M. Salzberg, “Spatiotemporal patterns of activity in an intact mammalian network with single-cell resolution: optical studies of nicotinic activity in an enteric plexus,” J. Neurosci.19(8), 3073–3093 (1999). [PubMed]
  16. J. B. Furness, The Enteric Nervous System (Blackwell Pub., Malden, Mass., 2006), pp. xiii, 274 p.
  17. W. Boesmans, M. A. Martens, N. Weltens, M. M. Hao, J. Tack, C. Cirillo, and P. Vanden Berghe, “Imaging neuron-glia interactions in the enteric nervous system,” Front Cell Neurosci.7, 183 (2013). [CrossRef] [PubMed]
  18. P. Vanden Berghe, J. Tack, and W. Boesmans, “Highlighting synaptic communication in the enteric nervous system,” Gastroenterology135(1), 20–23 (2008). [CrossRef] [PubMed]
  19. R. J. Stevens, N. G. Publicover, and T. K. Smith, “Propagation and neural regulation of calcium waves in longitudinal and circular muscle layers of guinea pig small intestine,” Gastroenterology118(5), 892–904 (2000). [CrossRef] [PubMed]
  20. F. Helmchen and A. Konnerth, Imaging in Neuroscience: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2011), 1084 p.
  21. S. Schwartz, “Real-Time Laser-Scanning Confocal Ratio Imaging,” Am. Lab.25, 53–57 (1993).
  22. R. P. Aylward, “The advances & technologies of galvanometer-based optical scanners,” Opt. Scanning: Design Appl.3787, 158–164 (1999). [CrossRef]
  23. G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci.11(6), 713–720 (2008). [CrossRef] [PubMed]
  24. G. Antoons, K. Mubagwa, I. Nevelsteen, and K. R. Sipido, “Mechanisms underlying the frequency dependence of contraction and [Ca2+](i) transients in mouse ventricular myocytes,” J. Physiol.543(3), 889–898 (2002). [CrossRef] [PubMed]
  25. K. R. Gee, K. A. Brown, W. N. Chen, J. Bishop-Stewart, D. Gray, and I. Johnson, “Chemical and physiological characterization of fluo-4 Ca(2+)-indicator dyes,” Cell Calcium27(2), 97–106 (2000). [CrossRef] [PubMed]
  26. A. Takahashi, P. Camacho, J. D. Lechleiter, and B. Herman, “Measurement of intracellular calcium,” Physiol. Rev.79(4), 1089–1125 (1999). [PubMed]
  27. M. L. Woodruff, A. P. Sampath, H. R. Matthews, N. V. Krasnoperova, J. Lem, and G. L. Fain, “Measurement of cytoplasmic calcium concentration in the rods of wild-type and transducin knock-out mice,” J. Physiol.542(3), 843–854 (2002). [CrossRef] [PubMed]
  28. J. J. Galligan, K. J. LePard, D. A. Schneider, and X. Zhou, “Multiple mechanisms of fast excitatory synaptic transmission in the enteric nervous system,” J. Auton. Nerv. Syst.81(1-3), 97–103 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (3188 KB)     
» Media 2: AVI (4118 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited