OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 8 — Aug. 1, 2014
  • pp: 2662–2678

In vivo mouse fluorescence imaging for folate-targeted delivery and release kinetics

Esther H. R. Tsai, Brian Z. Bentz, Venkatesh Chelvam, Vaibhav Gaind, Kevin J. Webb, and Philip S. Low  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 8, pp. 2662-2678 (2014)
http://dx.doi.org/10.1364/BOE.5.002662


View Full Text Article

Enhanced HTML    Acrobat PDF (2421 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Many cancer cells over-express folate receptors, and this provides an opportunity for both folate-targeted fluorescence imaging and the development of targeted anti-cancer drugs. We present an optical imaging modality that allows for the monitoring and evaluation of drug delivery and release through disulfide bond reduction inside a tumor in vivo for the first time. A near-infrared folate-targeting fluorophore pair was synthesized and used to image a xenograft tumor grown from KB cells in a live mouse. The in vivo results are shown to be in agreement with previous in vitro studies, confirming the validity and feasibility of our method as an effective tool for preclinical studies in drug development.

© 2014 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Small Animal Imaging and Veterinary Studies

Citation
Esther H. R. Tsai, Brian Z. Bentz, Venkatesh Chelvam, Vaibhav Gaind, Kevin J. Webb, and Philip S. Low, "In vivo mouse fluorescence imaging for folate-targeted delivery and release kinetics," Biomed. Opt. Express 5, 2662-2678 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-8-2662


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Hilderbrand and R. Weissleder, “Near-infrared fluorescence: application to in vivo molecular imaging,” Curr. Opin. Chem. Biol.14, 71–79 (2010). [CrossRef]
  2. C. Darne, Y. Lu, and E. M. Sevick-Muraca, “Small animal fluorescence and bioluminescence tomography: a review of approaches, algorithms and technology update,” Phys. Med. Biol.59, R1–R64 (2014). [CrossRef]
  3. G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescent imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med.17, 1315–1319 (2011). [CrossRef] [PubMed]
  4. Q. T. Nguyen, E. S. Olson, T. A. Aguilera, T. Jiang, M. Scadeng, L. G. Ellies, and R. Y. Tsien, “Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival,” Proc. Natl. Acad. Sci. U.S.A.107, 4317–4322 (2010). [CrossRef] [PubMed]
  5. B. Alacam, B. Yazici, X. Intes, S. Nioka, and B. Chance, “Pharmacokinetic-rate images of indocyanine green for breast tumors using near-infrared optical methods,” Phys. Med. Biol.53, 837–859 (2008). [CrossRef] [PubMed]
  6. W. Xia and P. S. Low, “Folate-targeted therapies for cancer,” J. Med. Chem.53, 6811–6824 (2010). [CrossRef] [PubMed]
  7. P. S. Low, W. A. Henne, and D. D. Doorneweerd, “Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases,” Acc. Chem. Res.41, 120–129 (2008). [CrossRef]
  8. J. Sudimack and R. J. Lee, “Targeted drug delivery via the folate receptor,” Adv. Drug Deliv. Rev.41, 147–162 (2000). [CrossRef] [PubMed]
  9. C. M. Paulos, M. J. Turk, G. J. Breur, and P. S. Low, “Folate receptor-mediated targeting of therapeutic and imaging agents to activated macrophages in rheumatoid arthritis,” Adv. Drug Deliv. Rev.56, 1205–1217 (2004). [CrossRef] [PubMed]
  10. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods2, 932–940 (2005). [CrossRef] [PubMed]
  11. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl.15, R41–R93 (1999). [CrossRef]
  12. J. C. Ye, K. J. Webb, C. A. Bouman, and R. P. Millane, “Optical diffusion tomography using iterative coordinate descent optimization in a Bayesian framework,” J. Opt. Soc. Am. A16, 2400–2412 (1999). [CrossRef]
  13. V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8, 757–761 (2002). [CrossRef] [PubMed]
  14. J. Yang, H. Chen, I. R. Vlahov, J.-X. Cheng, and P. S. Low, “Evaluation of disulfide reduction during receptor-mediated endocytosis by using FRET imaging,” Proc. Natl. Acad. Sci. USA103, 13872–13877 (2006). [CrossRef] [PubMed]
  15. R. M. Sandoval, M. D. Kennedy, P. S. Low, and B. A. Molitoris, “Uptake and trafficking of fluorescent conjugates of folic acid in intact kidney determined using intravital two-photon microscopy,” Am. J. Physiol.-Cell Ph.287, C517–C526 (2004). [CrossRef]
  16. C. M. Paulos, J. A. Reddy, C. P. Leamon, M. J. Turk, and P. S. Low, “Ligand binding and kinetics of folate receptor recycling in vivo: impact on receptor-mediated drug delivery,” Mol. Pharmacol.66, 1406–1414 (2004). [CrossRef] [PubMed]
  17. C. H. Tung, Y. Lin, W. K. Moon, and R. Weissleder, “A receptor-targeted near-infrared fluorescence probe for in vivo tumor imaging,” ChemBioChem8, 784–786 (2002). [CrossRef]
  18. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, “Optical image reconstruction using frequency domain data: simulations and experiments,” J. Opt. Soc. Am. A13, 253–266 (1996). [CrossRef]
  19. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt.28, 2331–2336 (1989). [CrossRef] [PubMed]
  20. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt.42, 3081–3094 (2003). [CrossRef] [PubMed]
  21. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys.20, 299–309 (1993). [CrossRef] [PubMed]
  22. A. B. Milstein, K. J. Webb, and C. A. Bouman, “Estimation of kinetic model parameters in fluorescence optical diffusion tomography,” J. Opt. Soc. Am. A22, 1357–1368 (2005). [CrossRef]
  23. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, S. Merritt, B. J. Tromberg, G. Gulsen, H. Yu, J. Wang, and O. Nalcioglu, “In vivo quantification of optical contrast agent dynamics in rat tumors by use of diffuse optical spectroscopy with magnetic resonance imaging coregistration,” Appl. Opt.42, 2940–2950 (2003). [CrossRef] [PubMed]
  24. M. Gurfinkel, A. B. Thompson, W. B. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol.72, 94–102 (2000). [CrossRef] [PubMed]
  25. M.-Y. Su, J.-C. Jao, and O. Nalcioglu, “Measurement of vascular volume fraction and blood-tissue permeability constants with a pharmacokinetic model: Studies in rat muscle tumors with dynamic gd-DTPA enhanced MRI,” Magn. Reson. Med.32, 714–724 (1994). [CrossRef] [PubMed]
  26. A. C. Riches, J. G. Sharp, D. B. Thomas, and S. V. Smith, “Blood volume determination in the mouse,” J. Physiol.228, 279–284 (1973). [PubMed]
  27. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2009).
  28. A. B. Milstein, S. Oh, J. S. Reynolds, K. J. Webb, C. A. Bouman, and R. P. Millane, “Three-dimensional Bayesian optical diffusion tomography with experimental data,” Opt. Lett.27, 95–97 (2002). [CrossRef]
  29. H.-R. Tsai, F. Enderli, T. Feurer, and K. J. Webb, “Optimization-based terahertz imaging,” IEEE Trans. THz Sci. Technol.2, 493–503 (2012). [CrossRef]
  30. J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol.7, 626–634 (2003). [CrossRef] [PubMed]
  31. Y. Shin, K. A. Winans, B. J. Backes, S. B. H. Kent, J. A. Ellman, and C. R. Bertozzi, “Fmoc-based synthesis of peptide-αthioesters: application to the total chemical synthesis of a glycoprotein by native chemical ligation,” J. Am. Chem. Soc.121, 11684–11689 (1999). [CrossRef]
  32. N. Parker, M. J. Turk, E. Westrick, J. D. Lewis, P. S. Low, and C. P. Leamon, “Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay,” Anal. Biochem.338, 284–293 (2005). [CrossRef] [PubMed]
  33. V. Gaind, H.-R. Tsai, K. J. Webb, V. Chelvam, and P. S. Low, “Small animal optical diffusion tomography with targeted fluorescence,” J. Opt. Soc. Am. A30, 1146–1154 (2013). [CrossRef]
  34. T. Durduran, A. G. Yodh, B. Chance, and D. A. Boas, “Does the photon-diffusion coefficient depend on absorption?” J. Opt. Soc. Am. A14, 3358–3365 (1997). [CrossRef]
  35. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol.50, 4225–4241 (2005). [CrossRef] [PubMed]
  36. V. Gaind, K. J. Webb, S. Kularatne, and C. A. Bouman, “Towards in vivo imaging of intramolecular fluorescence resonance energy transfer parameters,” J. Opt. Soc. Am. A26, 1805–1813 (2009). [CrossRef]
  37. V. Gaind, S. Kularatne, P. S. Low, and K. J. Webb, “Deep tissue imaging of intramolecular fluorescence resonance energy transfer parameters,” Opt. Lett.35, 1314–1316 (2010). [CrossRef] [PubMed]
  38. T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenze,” Ann. Physik2, 55 (1948). [CrossRef]
  39. J. McGinty, D. W. Stuckey, V. Y. Soloviev, R. Laine, M. Wylezinska-Arridge, D. J. Wells, S. R. Arridge, P. M. W. French, J. V. Hajnal, and A. Sardini, “In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse,” Biomed. Opt. Express2, 1907–1917 (2011). [CrossRef] [PubMed]
  40. J. C. Ye, C. A. Bouman, K. J. Webb, and R. P. Millane, “Nonlinear multigrid algorithms for Bayesian optical diffusion tomography,” IEEE Trans. Image Process.10, 909–922 (2001). [CrossRef]
  41. S. Oh, A. B. Milstein, C. A. Bouman, and K. J. Webb, “A general framework for nonlinear multigrid inversion,” IEEE Trans. Image Process.14, 125–140 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited