OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 8 — Aug. 1, 2014
  • pp: 2686–2696

Surface modification of silica particles with gold nanoparticles as an augmentation of gold nanoparticle mediated laser perforation

Stefan Kalies, Lara Gentemann, Markus Schomaker, Dag Heinemann, Tammo Ripken, and Heiko Meyer  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 8, pp. 2686-2696 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2612 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Gold nanoparticle mediated (GNOME) laser transfection/perforation fulfills the demands of a reliable transfection technique. It provides efficient delivery and has a negligible impact on cell viability. Furthermore, it reaches high-throughput applicability. However, currently only large gold particles (> 80 nm) allow successful GNOME laser perforation, probably due to insufficient sedimentation of smaller gold nanoparticles. The objective of this study is to determine whether this aspect can be addressed by a modification of silica particles with gold nanoparticles. Throughout the analysis, we show that after the attachment of gold nanoparticles to silica particles, comparable or better efficiencies to GNOME laser perforation are reached. In combination with 1 µm silica particles, we report laser perforation with gold nanoparticles with sizes down to 4 nm. Therefore, our investigations have great importance for the future research in and the fields of laser transfection combined with plasmonics.

© 2014 Optical Society of America

OCIS Codes
(000.1430) General : Biology and medicine
(350.4990) Other areas of optics : Particles
(160.4236) Materials : Nanomaterials
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Nanotechnology and Plasmonics

Original Manuscript: May 13, 2014
Revised Manuscript: June 26, 2014
Manuscript Accepted: June 27, 2014
Published: July 17, 2014

Stefan Kalies, Lara Gentemann, Markus Schomaker, Dag Heinemann, Tammo Ripken, and Heiko Meyer, "Surface modification of silica particles with gold nanoparticles as an augmentation of gold nanoparticle mediated laser perforation," Biomed. Opt. Express 5, 2686-2696 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. A.  Whitehead, R.  Langer, D. G.  Anderson, “Knocking down barriers: advances in siRNA delivery,” Nat. Rev. Drug Discov. 8(2), 129–138 (2009). [CrossRef] [PubMed]
  2. A.  de Fougerolles, H.-P.  Vornlocher, J.  Maraganore, J.  Lieberman, “Interfering with disease: a progress report on siRNA-based therapeutics,” Nat. Rev. Drug Discov. 6(6), 443–453 (2007). [CrossRef] [PubMed]
  3. K.  Gao, L.  Huang, “Nonviral methods for siRNA delivery,” Mol. Pharm. 6(3), 651–658 (2009). [CrossRef] [PubMed]
  4. T. M.  Allen, P. R.  Cullis, “Liposomal drug delivery systems: from concept to clinical applications,” Adv. Drug Deliv. Rev. 65(1), 36–48 (2013). [CrossRef] [PubMed]
  5. J.  Piñero, M.  López-Baena, T.  Ortiz, F.  Cortés, “Apoptotic and necrotic cell death are both induced by electroporation in HL60 human promyeloid leukaemia cells,” Apoptosis 2(3), 330–336 (1997). [CrossRef] [PubMed]
  6. J.  Panyam, V.  Labhasetwar, “Biodegradable nanoparticles for drug and gene delivery to cells and tissue,” Adv. Drug Deliv. Rev. 55(3), 329–347 (2003). [CrossRef] [PubMed]
  7. N. L.  Rosi, D. A.  Giljohann, C. S.  Thaxton, A. K.  Lytton-Jean, M. S.  Han, C. A.  Mirkin, “Oligonucleotide-modified gold nanoparticles for intracellular gene regulation,” Science 312(5776), 1027–1030 (2006). [CrossRef] [PubMed]
  8. I. I.  Slowing, J. L.  Vivero-Escoto, C.-W.  Wu, V. S.-Y.  Lin, “Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers,” Adv. Drug Deliv. Rev. 60(11), 1278–1288 (2008). [CrossRef] [PubMed]
  9. C.  Kneuer, M.  Sameti, U.  Bakowsky, T.  Schiestel, H.  Schirra, H.  Schmidt, C.-M.  Lehr, “A Nonviral DNA Delivery System Based on Surface Modified Silica-Nanoparticles Can Efficiently Transfect Cells in Vitro,” Bioconjug. Chem. 11(6), 926–932 (2000). [CrossRef] [PubMed]
  10. M.  Tsukakoshi, S.  Kurata, Y.  Nomiya, Y.  Ikawa, T.  Kasuya, “A novel method of DNA transfection by laser microbeam cell surgery,” Appl. Phys. B. 35(3), 135–140 (1984).
  11. U. K.  Tirlapur, K.  König, C.  Peuckert, R.  Krieg, K. J.  Halbhuber, “Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Res. 263(1), 88–97 (2001). [CrossRef] [PubMed]
  12. D. J.  Stevenson, F. J.  Gunn-Moore, P.  Campbell, K.  Dholakia, “Single cell optical transfection,” J. R. Soc. Interface 7(47), 863–871 (2010). [CrossRef] [PubMed]
  13. A.  Vogel, J.  Noack, G.  Hüttman, G.  Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005). [CrossRef]
  14. J.  Baumgart, L.  Humbert, É.  Boulais, R.  Lachaine, J.-J.  Lebrun, M.  Meunier, “Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells,” Biomaterials 33(7), 2345–2350 (2012). [CrossRef] [PubMed]
  15. D.  Heinemann, M.  Schomaker, S.  Kalies, M.  Schieck, R.  Carlson, H. M.  Escobar, T.  Ripken, H.  Meyer, A.  Heisterkamp, “Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down,” PLoS ONE 8(3), e58604 (2013). [CrossRef] [PubMed]
  16. S.  Kalies, D.  Heinemann, M.  Schomaker, H. M.  Escobar, A.  Heisterkamp, T.  Ripken, H.  Meyer, “Plasmonic laser treatment for Morpholino oligomer delivery in antisense applications,” J. Biophoton. doi: . (2013) [CrossRef]
  17. S.  Kalies, T.  Birr, D.  Heinemann, M.  Schomaker, T.  Ripken, A.  Heisterkamp, H.  Meyer, “Enhancement of extracellular molecule uptake in plasmonic laser perforation,” J. Biophoton. doi: , (2013). [CrossRef]
  18. G.  Bisker, D.  Yelin, “Noble-metal nanoparticles and short pulses for nanomanipulations: theoretical analysis,” J. Opt. Soc. Am. B 29(6), 1383 (2012). [CrossRef]
  19. E.  Boulais, R.  Lachaine, M.  Meunier, “Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation,” Nano Lett. 12(9), 4763–4769 (2012). [CrossRef] [PubMed]
  20. C.  Yao, X.  Qu, Z.  Zhang, G.  Hüttmann, R.  Rahmanzadeh, “Influence of laser parameters on nanoparticle-induced membrane permeabilization,” J. Biomed. Opt. 14(5), 054034 (2009). [CrossRef] [PubMed]
  21. E. Y.  Lukianova-Hleb, X.  Ren, P. E.  Constantinou, B. P.  Danysh, D. L.  Shenefelt, D. D.  Carson, M. C.  Farach-Carson, V. A.  Kulchitsky, X.  Wu, D. S.  Wagner, D. O.  Lapotko, “Improved cellular specificity of plasmonic nanobubbles versus nanoparticles in heterogeneous cell systems,” PLoS ONE 7(4), e34537 (2012). [CrossRef] [PubMed]
  22. N. R.  Jana, L.  Gearheart, C. J.  Murphy, “Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods,” J. Phys. Chem. B 105(19), 4065–4067 (2001). [CrossRef]
  23. S.  Westcott, S.  Oldenburg, T.  Lee, N.  Halas, “Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle surfaces,” Langmuir 14(19), 5396–5401 (1998). [CrossRef]
  24. S. L.  Voytik-Harbin, A. O.  Brightman, B.  Waisner, C. H.  Lamar, S. F.  Badylak, “Application and evaluation of the alamarBlue assay for cell growth and survival of fibroblasts,” In Vitro Cell. Dev. Biol. Anim. 34(3), 239–246 (1998). [CrossRef] [PubMed]
  25. P.  Laven, “MiePlot: a computer program for scattering of light from a sphere using Mie theory & the Debye series,” http://www.philiplaven.com/mieplot.htm
  26. A.  Vogel, V.  Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003), doi:. [CrossRef] [PubMed]
  27. C.  Liu, Z.  Li, Z.  Zhang, “Mechanisms of laser nanoparticle-based techniques for gene transfection-a calculation study,” J. Biol. Phys. 35(2), 175–183 (2009). [CrossRef] [PubMed]
  28. H.  Goldenberg, C. J.  Tranter, “Heat flow in an infinite medium heated by a sphere,” Br. J. Appl. Phys. 3(9), 296–298 (1952). [CrossRef]
  29. C. A.  Schneider, W. S.  Rasband, K. W.  Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012). [CrossRef] [PubMed]
  30. J.  Neumann, R.  Brinkmann, “Boiling nucleation on melanosomes and microbeads transiently heated by nanosecond and microsecond laser pulses,” J. Biomed. Opt. 10(2), 024001 (2005). [CrossRef] [PubMed]
  31. V. P.  Zharov, R. R.  Letfullin, E. N.  Galitovskaya, “Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters,” J. Phys. D Appl. Phys. 38(15), 2571–2581 (2005). [CrossRef]
  32. I. M. M.  Paino, V. S.  Marangoni, R. C.  de Oliveira, L. M. G.  Antunes, V.  Zucolotto, “Cyto and genotoxicity of gold nanoparticles in human hepatocellular carcinoma and peripheral blood mononuclear cells,” Toxicol. Lett. 215(2), 119–125 (2012). [CrossRef] [PubMed]
  33. M.  Tsoli, H.  Kuhn, W.  Brandau, H.  Esche, G.  Schmid, “Cellular uptake and toxicity of Au55 clusters,” Small 1(8-9), 841–844 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited