OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 8 — Aug. 1, 2014
  • pp: 2697–2714

Optical design and evaluation of a 4 mm cost-effective ultra-high-definition arthroscope

Dewen Cheng, Yongtian Wang, Lu Yu, and Xiaohua Liu  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 8, pp. 2697-2714 (2014)
http://dx.doi.org/10.1364/BOE.5.002697


View Full Text Article

Enhanced HTML    Acrobat PDF (12115 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High definition and magnification rigid endoscope plays an important role in modern minimally invasive medical surgery and diagnosis. In this paper, we present the design and evaluation methods of a high definition rigid endoscope, specifically an arthroscope, with a large depth of field (DOF). The incident heights and exit angles of the sampled rays on the relay lens are controlled during the optimization process to ensure an effective field view (70°) and a normal ray path within the limited lens diameter of 2.7 mm. The lens is set up as a multi-configuration system with two extreme and one middle object distances to cover a large DOF. As a result, an entrance pupil of 0.3 mm is achieved for the first time, to bring the theoretical resolution to 23.1 lps/mm in the object space at a working distance of 20 mm, with the wavelength of 0.532 um. The modulation transfer function (MTF) curves approach diffraction limit, and the values are all higher than 0.3 at 160 line pairs/mm (lps/mm) in the image space. Meanwhile, stray light caused by total internal reflection on the inner wall of the rod lenses and the objective lens is eliminated. The measured resolution in the object space at a 20 mm working distance is 22.3 lps/mm, and test results show that other performance characteristics also fulfill design requirements. The relay lenses are designed with only one type of the spacer and two types of lenses to greatly reduce the fabrication and assembly cost. The design method has important research and application values for lens systems used in modern minimally invasive medical surgery and industrial non-destructive testing area.

© 2014 Optical Society of America

OCIS Codes
(080.2740) Geometric optics : Geometric optical design
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.1000) Optical design and fabrication : Aberration compensation

ToC Category:
Endoscopes, Catheters and Micro-Optics

History
Original Manuscript: March 17, 2014
Revised Manuscript: June 19, 2014
Manuscript Accepted: June 19, 2014
Published: July 18, 2014

Citation
Dewen Cheng, Yongtian Wang, Lu Yu, and Xiaohua Liu, "Optical design and evaluation of a 4 mm cost-effective ultra-high-definition arthroscope," Biomed. Opt. Express 5, 2697-2714 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-8-2697


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Liang, Optical design for biomedical imaging (SPIE Press, 2010).
  2. T. H. Tomkinson, J. L. Bentley, M. K. Crawford, C. J. Harkrider, D. T. Moore, and J. L. Rouke, “Rigid endoscopic relay systems: a comparative study,” Appl. Opt.35(34), 6674–6683 (1996). [CrossRef] [PubMed]
  3. P. Bozzini, “Light conductor, an invention for viewing internal parts and diseases, together with illustrations,” J. Prac. Med. Surgery24, 107–124 (1806).
  4. S. J. Spaner and G. L. Warnock, “A brief history of endoscopy, laparoscopy, and laparoscopic surgery,” J. Laparoendosc. Adv. Surg. Tech. A7(6), 369–373 (1997). [CrossRef] [PubMed]
  5. P. Mouret, “From the first laparoscopic cholecystectomy,” Dig. Surg.8(2), 124–125 (1991). [CrossRef]
  6. T. D. Wang, G. S. Janes, Y. Wang, I. Itzkan, J. Van Dam, and M. S. Feld, “Mathematical model of fluorescence endoscopic image formation,” Appl. Opt.37(34), 8103–8111 (1998). [CrossRef] [PubMed]
  7. K. E. Nelson, and C. M. Williams, Infectious Disease Epidemiology: Theory and Practice (Jones and Bartlett Publishers, 2007).
  8. R. T. Kester, T. S. Tkaczyk, M. R. Descour, T. Christenson, and R. Richards-Kortum, “High numerical aperture microendoscope objective for a fiber confocal reflectance microscope,” Opt. Express15(5), 2409–2420 (2007),. [CrossRef] [PubMed]
  9. Y. Qin, H. Hua, and M. Nguyen, “Multiresolution foveated laparoscope with high resolvability,” Opt. Lett.38(13), 2191–2193 (2013). [CrossRef] [PubMed]
  10. M. Kyrish and T. S. Tkaczyk, “Achromatized endomicroscope objective for optical biopsy,” Biomed. Opt. Express4(2), 287–297 (2013). [CrossRef] [PubMed]
  11. M. D. Chidley, K. D. Carlson, R. R. Richards-Kortum, and M. R. Descour, “Design, assembly, and optical bench testing of a high-numerical-aperture miniature injection-molded objective for fiber-optic confocal reflectance microscopy,” Appl. Opt.45(11), 2545–2554 (2006). [CrossRef] [PubMed]
  12. M. Kyrish, U. Utzinger, M. R. Descour, B. K. Baggett, and T. S. Tkaczyk, “Ultra-slim plastic endomicroscope objective for non-linear microscopy,” Opt. Express19(8), 7603–7615 (2011). [CrossRef] [PubMed]
  13. R. Kiesslich, M. Goetz, A. Hoffman, and P. R. Galle, “New imaging techniques and opportunities in endoscopy,” Nat Rev. Gastroenterol. Hepatol.8(10), 547–553 (2011), doi:. [CrossRef] [PubMed]
  14. S. A. Gross, A. M. Buchner, J. E. Crook, J. R. Cangemi, M. F. Picco, H. C. Wolfsen, K. R. DeVault, D. S. Loeb, M. Raimondo, T. A. Woodward, and M. B. Wallace, “A comparison of high definition-image enhanced colonoscopy and standard white-light colonoscopy for colorectal polyp detection,” Endoscopy43(12), 1045–1051 (2011). [CrossRef] [PubMed]
  15. A. Rastogi, D. S. Early, N. Gupta, A. Bansal, V. Singh, M. Ansstas, S. S. Jonnalagadda, C. E. Hovis, S. Gaddam, S. B. Wani, S. A. Edmundowicz, and P. Sharma, “Randomized, controlled trial of standard-definition white-light, high-definition white-light, and narrow-band imaging colonoscopy for the detection of colon polyps and prediction of polyp histology,” Gastrointest. Endosc.74(3), 593–602 (2011). [CrossRef] [PubMed]
  16. N. Vakil, W. Smith, K. Bourgeois, E. C. Everbach, and K. Knyrim, “Endoscopic measurement of lesion size: improved accuracy with image processing,” Gastrointest. Endosc.40(2), 178–183 (1994). [CrossRef] [PubMed]
  17. J. Galli, G. Cammarota, M. Rigante, E. De Corso, C. Parrilla, G. C. Passali, G. Almadori, and G. Paludetti, “High resolution magnifying endoscopy: a new diagnostic tool also for laryngeal examination?” Acta Otorhinolaryngol. Ital.27(5), 233–236 (2007). [PubMed]
  18. R. Prescott, “Model for the assessment of image quality in endoscopes,” in 25th Annual Technical Symposium (International Society for Optics and Photonics), 53–57, (1981).
  19. Medical endoscopes—rigid endoscope, Part 1: Optical properties and test methods, Chinese National Standard, YY 0068.1, (2008).
  20. R. P. Breault, “Control of stray light,” in Handbook of Optics (Mc-Graw-Hill, New York, 1995).
  21. M. P. Schaub, The Design of Plastic Optical Systems (SPIE Press, Bellingham, 2009).
  22. LightTools Reference Manuals, (Version 7.2). Synopsys OSG, (2013).
  23. K. Kasai, “Rigid endoscope,” (2010). US Patents 7,724,430.
  24. R. J. Michaels, “Sapphire objective system,” (2000). US Patents 6,038,079.
  25. C. Liang, K. B. Sung, R. R. Richards-Kortum, and M. R. Descour, “Design of a high-numerical-aperture miniature microscope objective for an endoscopic fiber confocal reflectance microscope,” Appl. Opt.41(22), 4603–4610 (2002). [CrossRef] [PubMed]
  26. S. M. Landau, C. Liang, R. T. Kester, T. S. Tkaczyk, and M. R. Descour, “Design and evaluation of an ultra-slim objective for in-vivo deep optical biopsy,” Opt. Express18(5), 4758–4775 (2010). [CrossRef] [PubMed]
  27. CODE V Reference Manuals, (Version 10.6). Synopsys OSG, 2014.
  28. M. Laikin, Lens Design, 4th ed. (Marcel Dekker, 2006), Chap.14.
  29. D. Malacara, Handbook of Optical Design (Marcel Dekker, New York, 2004). Chap.15.
  30. S. J. Dobson and J. Ribeiro, “The primary aberration characteristics of thin-lens models of common relay systems,” Meas. Sci. Technol.5(1), 32–36 (1994). [CrossRef]
  31. Using the glass expert macro, User Group Presentation, Synopsys OSG, (2010).
  32. JB/T 9328–1999 Resolving power test target.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited