OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 8 — Aug. 1, 2014
  • pp: 2736–2758

Fiber-based polarization-sensitive OCT of the human retina with correction of system polarization distortions

Boy Braaf, Koenraad A. Vermeer, Mattijs de Groot, Kari V. Vienola, and Johannes F. de Boer  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 8, pp. 2736-2758 (2014)
http://dx.doi.org/10.1364/BOE.5.002736


View Full Text Article

Enhanced HTML    Acrobat PDF (6346 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In polarization-sensitive optical coherence tomography (PS-OCT) the use of single-mode fibers causes unpredictable polarization distortions which can result in increased noise levels and erroneous changes in calculated polarization parameters. In the current paper this problem is addressed by a new Jones matrix analysis method that measures and corrects system polarization distortions as a function of wavenumber by spectral analysis of the sample surface polarization state and deeper located birefringent tissue structures. This method was implemented on a passive-component depth-multiplexed swept-source PS-OCT system at 1040 nm which was theoretically modeled using Jones matrix calculus. High-resolution B-scan images are presented of the double-pass phase retardation, diattenuation, and relative optic axis orientation to show the benefits of the new analysis method for in vivo imaging of the human retina. The correction of system polarization distortions yielded reduced phase retardation noise, and better estimates of the diattenuation and the relative optic axis orientation in weakly birefringent tissues. The clinical potential of the system is shown by en face visualization of the phase retardation and optic axis orientation of the retinal nerve fiber layer in a healthy volunteer and a glaucoma patient with nerve fiber loss.

© 2014 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(110.4500) Imaging systems : Optical coherence tomography
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4470) Medical optics and biotechnology : Ophthalmology
(260.5430) Physical optics : Polarization

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: May 28, 2014
Revised Manuscript: July 11, 2014
Manuscript Accepted: July 14, 2014
Published: July 22, 2014

Citation
Boy Braaf, Koenraad A. Vermeer, Mattijs de Groot, Kari V. Vienola, and Johannes F. de Boer, "Fiber-based polarization-sensitive OCT of the human retina with correction of system polarization distortions," Biomed. Opt. Express 5, 2736-2758 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-8-2736


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res.27(1), 45–88 (2008). [CrossRef] [PubMed]
  3. E. Götzinger, M. Pircher, M. Sticker, A. F. Fercher, and C. K. Hitzenberger, “Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography,” J. Biomed. Opt.9(1), 94–102 (2004). [CrossRef] [PubMed]
  4. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett.27(18), 1610–1612 (2002). [CrossRef] [PubMed]
  5. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.45(8), 2606–2612 (2004). [CrossRef] [PubMed]
  6. B. Cense, Q. Wang, S. Lee, L. Zhao, A. E. Elsner, C. K. Hitzenberger, and D. T. Miller, “Henle fiber layer phase retardation measured with polarization-sensitive optical coherence tomography,” Biomed. Opt. Express4(11), 2296–2306 (2013). [CrossRef] [PubMed]
  7. M. Pircher, E. Götzinger, R. Leitgeb, H. Sattmann, O. Findl, and C. Hitzenberger, “Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT,” Opt. Express12(24), 5940–5951 (2004). [CrossRef] [PubMed]
  8. E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express16(21), 16410–16422 (2008). [CrossRef] [PubMed]
  9. M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.47(12), 5487–5494 (2006). [CrossRef] [PubMed]
  10. M. Yamanari, Y. Lim, S. Makita, and Y. Yasuno, “Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-source optical coherence tomography with 1- µm probe,” Opt. Express17(15), 12385–12396 (2009). [CrossRef] [PubMed]
  11. B. Baumann, E. Götzinger, M. Pircher, and C. K. Hitzenberger, “Single camera based spectral domain polarization sensitive optical coherence tomography,” Opt. Express15(3), 1054–1063 (2007). [CrossRef] [PubMed]
  12. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B9(6), 903–908 (1992). [CrossRef]
  13. J. F. de Boer, T. E. Milner, M. J. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett.22(12), 934–936 (1997). [CrossRef] [PubMed]
  14. M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res.30(6), 431–451 (2011). [CrossRef] [PubMed]
  15. F. G. Schlanitz, B. Baumann, T. Spalek, C. Schütze, C. Ahlers, M. Pircher, E. Götzinger, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Performance of automated drusen detection by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(7), 4571–4579 (2011). [CrossRef] [PubMed]
  16. E. Götzinger, M. Pircher, B. Baumann, C. Ahlers, W. Geitzenauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina,” Opt. Express17(5), 4151–4165 (2009). [CrossRef] [PubMed]
  17. S. Zotter, M. Pircher, T. Torzicky, B. Baumann, H. Yoshida, F. Hirose, P. Roberts, M. Ritter, C. Schütze, E. Götzinger, W. Trasischker, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology,” Biomed. Opt. Express3(11), 2720–2732 (2012). [CrossRef] [PubMed]
  18. J. Dwelle, S. Liu, B. Wang, A. McElroy, D. Ho, M. K. Markey, T. Milner, and H. G. Rylander, “Thickness, phase retardation, birefringence, and reflectance of the retinal nerve fiber layer in normal and glaucomatous non-human primates,” Invest. Ophthalmol. Vis. Sci.53(8), 4380–4395 (2012). [CrossRef] [PubMed]
  19. E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Analysis of the origin of atypical scanning laser polarimetry patterns by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.49(12), 5366–5372 (2008). [CrossRef] [PubMed]
  20. C. Ahlers, E. Götzinger, M. Pircher, I. Golbaz, F. Prager, C. Schütze, B. Baumann, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.51(4), 2149–2157 (2010). [CrossRef] [PubMed]
  21. C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett.25(18), 1355–1357 (2000). [CrossRef] [PubMed]
  22. B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt.6(4), 474–479 (2001). [CrossRef] [PubMed]
  23. W. Y. Oh, B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Single-detector polarization-sensitive optical frequency domain imaging using high-speed intra A-line polarization modulation,” Opt. Lett.33(12), 1330–1332 (2008). [CrossRef] [PubMed]
  24. W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express16(2), 1096–1103 (2008). [CrossRef] [PubMed]
  25. M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express16(8), 5892–5906 (2008). [CrossRef] [PubMed]
  26. K. H. Kim, B. H. Park, Y. Tu, T. Hasan, B. Lee, J. Li, and J. F. de Boer, “Polarization-sensitive optical frequency domain imaging based on unpolarized light,” Opt. Express19(2), 552–561 (2011). [CrossRef] [PubMed]
  27. Y. Lim, Y. J. Hong, L. Duan, M. Yamanari, and Y. Yasuno, “Passive component based multifunctional Jones matrix swept source optical coherence tomography for Doppler and polarization imaging,” Opt. Lett.37(11), 1958–1960 (2012). [CrossRef] [PubMed]
  28. B. Baumann, W. Choi, B. Potsaid, D. Huang, J. S. Duker, and J. G. Fujimoto, “Swept source/Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit,” Opt. Express20(9), 10229–10241 (2012). [CrossRef] [PubMed]
  29. B. Elmaanaoui, B. Wang, J. C. Dwelle, A. B. McElroy, S. S. Liu, H. G. Rylander, and T. E. Milner, “Birefringence measurement of the retinal nerve fiber layer by swept source polarization sensitive optical coherence tomography,” Opt. Express19(11), 10252–10268 (2011). [CrossRef] [PubMed]
  30. M. Villiger, E. Z. Zhang, S. Nadkarni, W. Y. Oh, B. E. Bouma, and B. J. Vakoc, “Artifacts in polarization-sensitive optical coherence tomography caused by polarization mode dispersion,” Opt. Lett.38(6), 923–925 (2013). [CrossRef] [PubMed]
  31. E. Z. Zhang, W. Y. Oh, M. L. Villiger, L. Chen, B. E. Bouma, and B. J. Vakoc, “Numerical compensation of system polarization mode dispersion in polarization-sensitive optical coherence tomography,” Opt. Express21(1), 1163–1180 (2013). [CrossRef] [PubMed]
  32. M. Villiger, E. Z. Zhang, S. K. Nadkarni, W. Y. Oh, B. J. Vakoc, and B. E. Bouma, “Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging,” Opt. Express21(14), 16353–16369 (2013). [CrossRef] [PubMed]
  33. B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett.29(21), 2512–2514 (2004). [CrossRef] [PubMed]
  34. M. J. Ju, Y. J. Hong, S. Makita, Y. Lim, K. Kurokawa, L. Duan, M. Miura, S. Tang, and Y. Yasuno, “Advanced multi-contrast Jones matrix optical coherence tomography for Doppler and polarization sensitive imaging,” Opt. Express21(16), 19412–19436 (2013). [CrossRef] [PubMed]
  35. B. Braaf, K. A. Vermeer, V. A. Sicam, E. van Zeeburg, J. C. van Meurs, and J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-µm for the measurement of blood flow in the human choroid,” Opt. Express19(21), 20886–20903 (2011). [CrossRef] [PubMed]
  36. N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express12(3), 367–376 (2004). [CrossRef] [PubMed]
  37. N. V. Iftimia, D. X. Hammer, C. E. Bigelow, D. I. Rosen, T. Ustun, A. A. Ferrante, D. Vu, and R. D. Ferguson, “Toward noninvasive measurement of blood hematocrit using spectral domain low coherence interferometry and retinal tracking,” Opt. Express14(8), 3377–3388 (2006). [CrossRef] [PubMed]
  38. B. H. Park and J. F. De Boer, “Polarization-Sensitive Optical Coherence Tomography” in Optical Coherence Tomography: Technology and Applications, W. Drexler, and J. G. Fujimoto, eds. (Springer, 2008), 653–695.
  39. M. E. Brezinski, “Optical Coherence Tomography Theory: Appendix 5-1” in Optical Coherence Tomography: Principles and Applications, M. E. Brezinski, ed. (Elsevier, 2006), 141–142.
  40. S. Makita, M. Yamanari, and Y. Yasuno, “Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express18(2), 854–876 (2010). [CrossRef] [PubMed]
  41. S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt.7(3), 350–358 (2002). [CrossRef] [PubMed]
  42. R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett.25(11), 820–822 (2000). [CrossRef] [PubMed]
  43. G. van Soest, M. Villiger, E. Regar, G. J. Tearney, B. E. Bouma, and A. F. van der Steen, “Frequency domain multiplexing for speckle reduction in optical coherence tomography,” J. Biomed. Opt.17(7), 076018 (2012). [CrossRef] [PubMed]
  44. D. Hillmann, T. Bonin, C. Lührs, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT,” Opt. Express20(6), 6761–6776 (2012). [CrossRef] [PubMed]
  45. W. Choi, B. Baumann, E. A. Swanson, and J. G. Fujimoto, “Extracting and compensating dispersion mismatch in ultrahigh-resolution Fourier domain OCT imaging of the retina,” Opt. Express20(23), 25357–25368 (2012). [CrossRef] [PubMed]
  46. Y. Lim, M. Yamanari, S. Fukuda, Y. Kaji, T. Kiuchi, M. Miura, T. Oshika, and Y. Yasuno, “Birefringence measurement of cornea and anterior segment by office-based polarization-sensitive optical coherence tomography,” Biomed. Opt. Express2(8), 2392–2402 (2011). [CrossRef] [PubMed]
  47. G. D. VanWiggeren and R. Roy, “Transmission of linearly polarized light through a single-mode fiber with random fluctuations of birefringence,” Appl. Opt.38(18), 3888–3892 (1999). [CrossRef] [PubMed]
  48. S. Jiao, W. Yu, G. Stoica, and L. V. Wang, “Optical-fiber-based Mueller optical coherence tomography,” Opt. Lett.28(14), 1206–1208 (2003). [CrossRef] [PubMed]
  49. D. Penninckx and V. Morénas, “Jones matrix of polarization mode dispersion,” Opt. Lett.24(13), 875–877 (1999). [CrossRef] [PubMed]
  50. M. Pircher, E. Götzinger, B. Baumann, and C. K. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt.12(4), 041210 (2007). [CrossRef] [PubMed]
  51. B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Optic axis determination accuracy for fiber-based polarization-sensitive optical coherence tomography,” Opt. Lett.30(19), 2587–2589 (2005). [CrossRef] [PubMed]
  52. F. Fanjul-Vélez, M. Pircher, B. Baumann, E. Götzinger, C. K. Hitzenberger, and J. L. Arce-Diego, “Polarimetric analysis of the human cornea measured by polarization-sensitive optical coherence tomography,” J. Biomed. Opt.15(5), 056004 (2010). [CrossRef] [PubMed]
  53. E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express19(15), 14568–14585 (2011). [CrossRef] [PubMed]
  54. M. Todorović, S. Jiao, L. V. Wang, and G. Stoica, “Determination of local polarization properties of biological samples in the presence of diattenuation by use of Mueller optical coherence tomography,” Opt. Lett.29(20), 2402–2404 (2004). [CrossRef] [PubMed]
  55. N. Kemp, H. Zaatari, J. Park, H. G. Rylander, and T. Milner, “Form-biattenuance in fibrous tissues measured with polarization-sensitive optical coherence tomography (PS-OCT),” Opt. Express13(12), 4611–4628 (2005). [CrossRef] [PubMed]
  56. Q. Zhou, J. Reed, R. Betts, P. Trost, P. Lo, C. Wallace, R. Bienias, G. Li, R. Winnick, W. Papworth, and M. Sinai, “Detection of glaucomatous retinal nerve fiber layer damage by scanning laser polarimetry with variable corneal compensation,” Proc. SPIE4951, 32–41 (2003). [CrossRef]
  57. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express3(11), 2733–2751 (2012). [CrossRef] [PubMed]
  58. A. Petzold, J. F. de Boer, S. Schippling, P. Vermersch, R. Kardon, A. Green, P. A. Calabresi, and C. Polman, “Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis,” Lancet Neurol.9(9), 921–932 (2010). [CrossRef] [PubMed]
  59. M. Sugita, S. Zotter, M. Pircher, T. Makihira, K. Saito, N. Tomatsu, M. Sato, P. Roberts, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Motion artifact and speckle noise reduction in polarization sensitive optical coherence tomography by retinal tracking,” Biomed. Opt. Express5(1), 106–122 (2014). [CrossRef] [PubMed]
  60. K. V. Vienola, B. Braaf, C. K. Sheehy, Q. Yang, P. Tiruveedhula, D. W. Arathorn, J. F. de Boer, and A. Roorda, “Real-time eye motion compensation for OCT imaging with tracking SLO,” Biomed. Opt. Express3(11), 2950–2963 (2012). [CrossRef] [PubMed]
  61. B. Braaf, K. V. Vienola, C. K. Sheehy, Q. Yang, K. A. Vermeer, P. Tiruveedhula, D. W. Arathorn, A. Roorda, and J. F. de Boer, “Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO,” Biomed. Opt. Express4(1), 51–65 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited