OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 8 — Aug. 1, 2014
  • pp: 2769–2784

Speckle contrast optical spectroscopy, a non-invasive, diffuse optical method for measuring microvascular blood flow in tissue

Claudia P. Valdes, Hari M. Varma, Anna K. Kristoffersen, Tanja Dragojevic, Joseph P. Culver, and Turgut Durduran  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 8, pp. 2769-2784 (2014)
http://dx.doi.org/10.1364/BOE.5.002769


View Full Text Article

Enhanced HTML    Acrobat PDF (2423 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce a new, non-invasive, diffuse optical technique, speckle contrast optical spectroscopy (SCOS), for probing deep tissue blood flow using the statistical properties of laser speckle contrast and the photon diffusion model for a point source. The feasibility of the method is tested using liquid phantoms which demonstrate that SCOS is capable of measuring the dynamic properties of turbid media non-invasively. We further present an in vivo measurement in a human forearm muscle using SCOS in two modalities: one with the dependence of the speckle contrast on the source-detector separation and another on the exposure time. In doing so, we also introduce crucial corrections to the speckle contrast that account for the variance of the shot and sensor dark noises.

© 2014 Optical Society of America

OCIS Codes
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.6480) Medical optics and biotechnology : Spectroscopy, speckle
(170.7050) Medical optics and biotechnology : Turbid media

ToC Category:
Speckle Imaging and Diagnostics

History
Original Manuscript: June 9, 2014
Revised Manuscript: July 8, 2014
Manuscript Accepted: July 10, 2014
Published: July 23, 2014

Citation
Claudia P. Valdes, Hari M. Varma, Anna K. Kristoffersen, Tanja Dragojevic, Joseph P. Culver, and Turgut Durduran, "Speckle contrast optical spectroscopy, a non-invasive, diffuse optical method for measuring microvascular blood flow in tissue," Biomed. Opt. Express 5, 2769-2784 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-8-2769


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Devor, S. Sakadžić, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cerebr. Blood F. Met.32, 1259–1276 (2012). [CrossRef]
  2. M. J. Leahy, J. G. Enfield, N. T. Clancy, J. O. Doherty, P. McNamara, and G. E. Nilsson, “Biophotonic methods in microcirculation imaging,” Med. Las. App.22, 105–126 (2007). [CrossRef]
  3. J. Briers, “Laser speckle contrast imaging for measuring blood flow,” Opt. Appl.37, 139–152 (2007).
  4. D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and Imaging with Diffusing Temporal Field Correlations,” Phys. Rev. Lett.75, 1855–1858 (1995). [CrossRef] [PubMed]
  5. D. Boas and A. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A14, 192–215 (1997). [CrossRef]
  6. T. Durduran, R. Choe, W. Baker, and A. G. Yodh, “Diffuse Optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010). [CrossRef]
  7. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15, 011109 (2010). [CrossRef] [PubMed]
  8. R. Bi, J. Dong, and K. Lee, “Deep tissue flowmetry based on diffuse speckle contrast analysis,” Opt. Lett.38, 1401–1403 (2013). [CrossRef] [PubMed]
  9. R. Bi, J. Dong, and K. Lee, “Multi-channel deep tissue flowmetry based on temporal diffuse speckle contrast analysis,” Opt. Express21, 22854–22861 (2013). [CrossRef] [PubMed]
  10. H. M. Varma, C. P. Valdes, A. K. Kristoffersen, J. P. Culver, and T. Durduran, “Speckle contrast optical tomography: A new method for deep tissue three-dimensional tomography of blood flow,” Biomed. Opt. Express5, 1275–1289 (2014). [CrossRef] [PubMed]
  11. A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express16, 1975–1989 (2008). [CrossRef] [PubMed]
  12. R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76, 093110 (2005). [CrossRef]
  13. D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt.36, 4587–4599 (1997). [CrossRef] [PubMed]
  14. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, B. J. Tromberg, and M. S. McAdams, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A11, 2727–2741 (1994). [CrossRef]
  15. S. Yuan, “Sensitivity, noise and quantitative model of laser speckle contrast imaging,” Ph.D. thesis, Tufts University (2008).
  16. C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol.46, 2053–2065 (2001). [CrossRef] [PubMed]
  17. D. A. Boas, “Diffuse Photon Probes of Structural and Dynamical Properties of Turbid Media: Theory and Biomedical Applications,” Ph.D. thesis, University of Pennsylvania (1996).
  18. Hamamatsu Japan, ORCA-R2 Technical Note (2008).
  19. G. Yu, T. Durduran, G. Lech, C. Zhou, B. Chance, E. R. Mohler, and A. G. Yodh, “Time-dependent blood flow and oxygenation in human skeletal muscles measured with noninvasive near-infrared diffuse optical spectroscopies,” J. Biomed. Opt.10, 024027 (2005). [CrossRef] [PubMed]
  20. A. Mazhar, D. J. Cuccia, T. B. Rice, S. A. Carp, A. J. Durkin, D. A. Boas, B. Choi, and B. J. Tromberg, “Laser speckle imaging in the spatial frequency domain,” Biomed. Opt. Express2, 1553–1563 (2011). [CrossRef] [PubMed]
  21. J. Dunn, K. Forrester, L. Martin, J. Tulip, and R. Bray, “A transmissive laser speckle imaging technique for measuring deep tissue blood flow: an example application in finger joints,” Laser Surg. Med.43, 21–28 (2011). [CrossRef]
  22. H. He, Y. Tang, F. Zhou, J. Wang, Q. Luo, and P. Li, “Lateral laser speckle contrast analysis combined with line beam scanning illumination to improve the sampling depth of blood flow imaging,” Opt. Lett.37, 3774–3776 (2012). [CrossRef] [PubMed]
  23. J. McKinney, M. Webster, K. Webb, and A. Weiner, “Characterization and imaging in optically scattering media by use of laser speckle and a variable-coherence source,” Opt. Lett.25, 4–6 (2000). [CrossRef]
  24. M. J. Draijer, E. Hondebrink, T. G. van Leeuwen, and W. Steenbergen, “Connecting laser Doppler perfusion imaging and laser speckle contrast analysis,” in “Biomedical Optics (BiOS) 2008,” (International Society for Optics and Photonics, 2008), p. 68630C.
  25. V. Rajan, B. Varghese, T. G. van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser Doppler flowmetry,” Laser Med. Sci.24, 269–283 (2009). [CrossRef]
  26. M. Atlan, M. Gross, B. C. Forget, T. Vitalis, A. Rancillac, and A. K. Dunn, “Frequency-domain wide-field laser Doppler in vivo imaging,” Opt. Lett.31, 2762–2764 (2006). [CrossRef] [PubMed]
  27. T. Binzoni, T. Leung, D. Boggett, and D. Delpy, “Non-invasive laser Doppler perfusion measurements of large tissue volumes and human skeletal muscle blood RMS velocity,” Phys. Med. Biol.48, 2527–2549 (2003). [CrossRef] [PubMed]
  28. G. Dietsche, M. Ninck, C. Ortolf, J. Li, F. Jaillon, and T. Gisler, “Fiber-based multispeckle detection for time-resolved diffusing-wave spectroscopy: characterization and application to blood flow detection in deep tissue,” Appl. Opt.46, 8506–8514 (2007). [CrossRef] [PubMed]
  29. S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, “Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging,” Opt. Lett.33, 2886–2888 (2008). [CrossRef] [PubMed]
  30. J. Ramirez-San-Juan, R. Ramos-Garcia, G. Martinez-Niconoff, and B. Choi, “Simple correction factor for laser speckle imaging of flow dynamics,” Opt. Lett.39, 678–681 (2014). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited