OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 8 — Aug. 1, 2014
  • pp: 2810–2822

Frequency-modulated light scattering interferometry employed for optical properties and dynamics studies of turbid media

Liang Mei, Gabriel Somesfalean, and Sune Svanberg  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 8, pp. 2810-2822 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1341 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In the present work, fiber-based frequency-modulated light scattering interferometry (FMLSI) is developed and employed for studies of optical properties and dynamics in liquid phantoms made from Intralipid®. The fiber-based FMLSI system retrieves the optical properties by examining the intensity fluctuations through the turbid medium in a heterodyne detection scheme using a continuous-wave frequency-modulated coherent light source. A time resolution of 21 ps is obtained, and the experimental results for the diluted Intralipid phantoms show good agreement with the predicted results based on published data. The present system shows great potential for assessment of optical properties as well as dynamic studies in liquid phantoms, dairy products, and human tissues.

© 2014 Optical Society of America

OCIS Codes
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(120.6160) Instrumentation, measurement, and metrology : Speckle interferometry
(290.7050) Scattering : Turbid media

ToC Category:
Optics of Tissue and Turbid Media

Original Manuscript: April 29, 2014
Revised Manuscript: June 29, 2014
Manuscript Accepted: June 30, 2014
Published: July 28, 2014

Liang Mei, Gabriel Somesfalean, and Sune Svanberg, "Frequency-modulated light scattering interferometry employed for optical properties and dynamics studies of turbid media," Biomed. Opt. Express 5, 2810-2822 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. Q. Shi and C. A. Anderson, “Pharmaceutical applications of separation of absorption and scattering in near-infrared spectroscopy (NIRS),” J. Pharm. Sci.99(12), 4766–4783 (2010). [CrossRef] [PubMed]
  2. D. Khoptyar, A. A. Subash, S. Johansson, M. Saleem, A. Sparén, J. Johansson, and S. Andersson-Engels, “Broadband photon time-of-flight spectroscopy of pharmaceuticals and highly scattering plastics in the VIS and close NIR spectral ranges,” Opt. Express21(18), 20941–20953 (2013). [CrossRef] [PubMed]
  3. I. Bargigia, A. Nevin, A. Farina, A. Pifferi, C. D’Andrea, M. Karlsson, P. Lundin, G. Somesfalean, and S. Svanberg, “Diffuse optical techniques applied to wood characterisation,” J. Near Infrared Spectrosc.21(4), 259–268 (2013). [CrossRef]
  4. T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt.6(2), 167–176 (2001). [CrossRef] [PubMed]
  5. E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11(6), 064026 (2006). [CrossRef] [PubMed]
  6. T. Lister, P. A. Wright, and P. H. Chappell, “Optical properties of human skin,” J. Biomed. Opt.17(9), 090901 (2012). [CrossRef] [PubMed]
  7. S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys. Med. Biol.53(23), 6713–6727 (2008). [CrossRef] [PubMed]
  8. A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng.39(4), 1349–1357 (2011). [CrossRef] [PubMed]
  9. S. Fantini and A. Sassaroli, “Near-infrared optical mammography for breast cancer detection with intrinsic contrast,” Ann. Biomed. Eng.40(2), 398–407 (2012). [CrossRef] [PubMed]
  10. J. L. Sandell and T. C. Zhu, “A review of in-vivo optical properties of human tissues and its impact on PDT,” J. Biophotonics4(11-12), 773–787 (2011). [CrossRef] [PubMed]
  11. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol.58(11), R37–R61 (2013). [CrossRef] [PubMed]
  12. B. C. Wilson, E. M. Sevick, M. S. Patterson, and B. Chance, “Time-dependent optical spectroscopy and imaging for biomedical applications,” Proceedings of the IEEE (1992). [CrossRef]
  13. B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 661–668 (1997). [CrossRef] [PubMed]
  14. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol.44(4), 967–981 (1999). [CrossRef] [PubMed]
  15. L. Mei, S. Svanberg, and G. Somesfalean, “Combined optical porosimetry and gas absorption spectroscopy in gas-filled porous media using diode-laser-based frequency domain photon migration,” Opt. Express20(15), 16942–16954 (2012). [CrossRef]
  16. J. M. Schmitt, A. Knüttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt.32(30), 6032–6042 (1993). [CrossRef] [PubMed]
  17. A. I. Kholodnykh, I. Y. Petrova, K. V. Larin, M. Motamedi, and R. O. Esenaliev, Optimization of low coherence interferometry for quantitative analysis of tissue optical properties, Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring II (2002).
  18. A. I. Kholodnykh, I. Y. Petrova, K. V. Larin, M. Motamedi, and R. O. Esenaliev, “Precision of measurement of tissue optical properties with optical coherence tomography,” Appl. Opt.42(16), 3027–3037 (2003). [CrossRef] [PubMed]
  19. T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci.40(2), 85–94 (2005). [CrossRef] [PubMed]
  20. V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt.16(6), 067007 (2011). [CrossRef] [PubMed]
  21. K. K. Bizheva, A. M. Siegel, and D. A. Boas, “Path-length-resolved dynamic light scattering in highly scattering random media: The transition to diffusing wave spectroscopy,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics58(6), 7664–7667 (1998). [CrossRef]
  22. A. Wax, C. H. Yang, R. R. Dasari, and M. S. Feld, “Path-length-resolved dynamic light scattering: Modeling the transition from single to diffusive scattering,” Appl. Opt.40(24), 4222–4227 (2001). [CrossRef] [PubMed]
  23. R. Carminati, R. Elaloufi, and J. J. Greffet, “Beyond the diffusing-wave spectroscopy model for the temporal fluctuations of scattered light,” Phys. Rev. Lett.92(21), 213903 (2004). [CrossRef] [PubMed]
  24. G. Popescu and A. Dogariu, “Optical path-length spectroscopy of wave propagation in random media,” Opt. Lett.24(7), 442–444 (1999). [CrossRef] [PubMed]
  25. B. Varghese, V. Rajan, T. G. van Leeuwen, and W. Steenbergen, “Quantification of optical Doppler broadening and optical path lengths of multiply scattered light by phase modulated low coherence interferometry,” Opt. Express15(15), 9157–9165 (2007). [CrossRef] [PubMed]
  26. D. A. Boas, K. K. Bizheva, and A. M. Siegel, “Using dynamic low-coherence interferometry to image Brownian motion within highly scattering media,” Opt. Lett.23(5), 319–321 (1998). [CrossRef] [PubMed]
  27. Z. P. Chen, T. E. Milner, S. Srinivas, X. J. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett.22(14), 1119–1121 (1997). [CrossRef] [PubMed]
  28. B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res.68(2), 143–146 (2004). [CrossRef] [PubMed]
  29. T. B. Rice, S. D. Konecky, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative determination of dynamical properties using coherent spatial frequency domain imaging,” J. Opt. Soc. Am. A28(10), 2108–2114 (2011). [CrossRef] [PubMed]
  30. T. B. Rice, E. Kwan, C. K. Hayakawa, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative, depth-resolved determination of particle motion using multi-exposure, spatial frequency domain laser speckle imaging,” Biomed. Opt. Express4(12), 2880–2892 (2013). [CrossRef] [PubMed]
  31. L. Mei, S. Svanberg, and G. Somesfalean, “Frequency-modulated light scattering in colloidal suspensions,” Appl. Phys. Lett.102(6), 061104 (2013). [CrossRef]
  32. C. Holt, T. G. Parker, and D. G. Dalgleish, “Measurement of particle sizes by elastic and quasi-elastic light scattering,” Biochim. Biophys. Acta400(2), 283–292 (1975). [CrossRef] [PubMed]
  33. R. Finsy, “Particle sizing by quasi-elastic light-scattering,” Adv. Colloid. Interfac.52, 79–143 (1994). [CrossRef]
  34. S. G. Anema and Y. M. Li, “Association of denatured whey proteins with casein micelles in heated reconstituted skim milk and its effect on casein micelle size,” J. Dairy Res.70(1), 73–83 (2003). [CrossRef] [PubMed]
  35. R. C. Murdock, L. Braydich-Stolle, A. M. Schrand, J. J. Schlager, and S. M. Hussain, “Characterization of nanomaterial dispersion in solution prior to In vitro exposure using dynamic light scattering technique,” Toxicol. Sci.101(2), 239–253 (2008). [CrossRef] [PubMed]
  36. Y. Yeh and H. Z. Cummins, “Localized fluid flow measurements with an He-Ne laser spectrometer,” Appl. Phys. Lett.4, 176–178 (1964). [CrossRef]
  37. W. Vanmegen and P. N. Pusey, “Dynamic light-scattering study of the glass-transition in a colloidal suspension,” Phys. Rev. A43(10), 5429–5441 (1991).
  38. J. B. Salmon, L. Bécu, S. Manneville, and A. Colin, “Towards local rheology of emulsions under Couette flow using Dynamic Light Scattering,” Eur Phys J E Soft Matter10(3), 209–221 (2003). [CrossRef] [PubMed]
  39. M. Berka and J. A. Rice, “Absolute aggregation rate constants in aggregation of kaolinite measured by simultaneous static and dynamic light scattering,” Langmuir20(15), 6152–6157 (2004). [CrossRef] [PubMed]
  40. T. Matsunaga and M. Shibayama, “Gel point determination of gelatin hydrogels by dynamic light scattering and rheological measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.76(3), 030401 (2007). [CrossRef] [PubMed]
  41. M. Alexander and D. G. Dalgleish, “Dynamic light scattering techniques and their applications in food science,” Food Biophys.1(1), 2–13 (2006). [CrossRef]
  42. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett.60(12), 1134–1137 (1988). [CrossRef] [PubMed]
  43. D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy–Dynamic light scattering in the multiple-scattering limit,” J. Phys. (Paris)51(18), 2101–2127 (1990). [CrossRef]
  44. D. D. Nolte, Optical Interferometry for Biology and Medicine. (Springer, New York, 2011), p.354.
  45. H. P. Marshall and G. Koh, “FMCW radars for snow research,” Cold Reg. Sci. Technol.52(2), 118–131 (2008). [CrossRef]
  46. P. E. Pace, “FMCW Radar,” in Detecting and classifying low probability of intercept radar (Artech House, Boston, 2009), 857.
  47. W. Eickhoff and R. Ulrich, “Optical frequency-domain reflectometry in single-mode fiber,” Appl. Phys. Lett.39(9), 693–695 (1981). [CrossRef]
  48. K. Yuksel, M. Wuilpart, V. Moeyaert, and P. Megret, “Optical frequency domain reflectometry: a review,” ICTON: 2009 11th International Conference on Transparent Optical Networks, Vols 1 and 2, 723–727 (2009). [CrossRef]
  49. Z. G. Guan, P. Lundin, and S. Svanberg, “Assessment of photon migration in scattering media using heterodyning techniques with a frequency modulated diode laser,” Opt. Express17(18), 16291–16299 (2009). [CrossRef] [PubMed]
  50. L. Mei, H. Jayaweera, P. Lundin, S. Svanberg, and G. Somesfalean, “Gas spectroscopy and optical path-length assessment in scattering media using a frequency-modulated continuous-wave diode laser,” Opt. Lett.36(16), 3036–3038 (2011). [CrossRef] [PubMed]
  51. L. Mei, P. Lundin, S. Andersson-Engels, S. Svanberg, and G. Somesfalean, “Characterization and validation of the frequency-modulated continuous-wave technique for assessment of photon migration in solid scattering media,” Appl. Phys. B109(3), 467–475 (2012). [CrossRef]
  52. J. M. Tualle, E. Tinet, and S. Avrillier, “A new and easy way to perform time-resolved measurements of the light scattered by a turbid medium,” Opt. Commun.189(4-6), 211–220 (2001). [CrossRef]
  53. J. M. Tualle, H. L. Nghiêm, M. Cheikh, D. Ettori, E. Tinet, and S. Avrillier, “Time-resolved diffusing wave spectroscopy beyond 300 transport mean free paths,” J. Opt. Soc. Am. A23(6), 1452–1457 (2006). [CrossRef] [PubMed]
  54. M. Cheikh, H. L. Nghiêm, D. Ettori, E. Tinet, S. Avrillier, and J. M. Tualle, “Time-resolved diffusing wave spectroscopy applied to dynamic heterogeneity imaging,” Opt. Lett.31(15), 2311–2313 (2006). [CrossRef] [PubMed]
  55. K. Zarychta, E. Tinet, L. Azizi, S. Avrillier, D. Ettori, and J. M. Tualle, “Time-resolved diffusing wave spectroscopy with a CCD camera,” Opt. Express18(16), 16289–16301 (2010). [CrossRef] [PubMed]
  56. J. Zheng, Optical Frequency-Modulated Continuous-Wave (FMCW) Interferometry (Springer, 2005).
  57. S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol.37(7), 1531–1560 (1992). [CrossRef] [PubMed]
  58. A. Giusto, R. Saija, M. A. Iatì, P. Denti, F. Borghese, and O. I. Sindoni, “Optical properties of high-density dispersions of particles: application to intralipid solutions,” Appl. Opt.42(21), 4375–4380 (2003). [CrossRef] [PubMed]
  59. R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express16(8), 5907–5925 (2008). [CrossRef] [PubMed]
  60. P. D. Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol.56(2), N21–N28 (2011). [CrossRef] [PubMed]
  61. P. Di Ninni, Y. Bérubé-Lauzière, L. Mercatelli, E. Sani, and F. Martelli, “Fat emulsions as diffusive reference standards for tissue simulating phantoms?” Appl. Opt.51(30), 7176–7182 (2012). [CrossRef] [PubMed]
  62. A. A. Subash, Master's thesis, Lund University, 2012.
  63. G. M. Hale and M. R. Querry, “Optical-constants of water in 200-nm to 200-μm wavelength region,” Appl. Opt.12(3), 555–563 (1973). [CrossRef] [PubMed]
  64. B. Varghese, V. Rajan, T. G. Van Leeuwen, and W. Steenbergen, “Path-length-resolved measurements of multiple scattered photons in static and dynamic turbid media using phase-modulated low-coherence interferometry,” J. Biomed. Opt.12(2), 024020 (2007). [CrossRef] [PubMed]
  65. I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun.281(11), 3071–3080 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited