OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 8 — Aug. 1, 2014
  • pp: 2823–2836

Longitudinal vascular dynamics following cranial window and electrode implantation measured with speckle variance optical coherence angiography

Daniel X. Hammer, Andrea Lozzi, Erkinay Abliz, Noah Greenbaum, Anant Agrawal, Victor Krauthamer, and Cristin G. Welle  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 8, pp. 2823-2836 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (9192 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Speckle variance optical coherence angiography (OCA) was used to characterize the vascular tissue response from craniotomy, window implantation, and electrode insertion in mouse motor cortex. We observed initial vasodilation ~40% greater than original diameter 2-3 days post-surgery (dps). After 4 weeks, dilation subsided in large vessels (>50 µm diameter) but persisted in smaller vessels (25-50 µm diameter). Neovascularization began 8-12 dps and vessel migration continued throughout the study. Vasodilation and neovascularization were primarily associated with craniotomy and window implantation rather than electrode insertion. Initial evidence of capillary re-mapping in the region surrounding the implanted electrode was manifest in OCA image dissimilarity. Further investigation, including higher resolution imaging, is required to validate the finding. Spontaneous lesions also occurred in many electrode animals, though the inception point appeared random and not directly associated with electrode insertion. OCA allows high resolution, label-free in vivo visualization of neurovascular tissue, which may help determine any biological contribution to chronic electrode signal degradation. Vascular and flow-based biomarkers can aid development of novel neural prostheses.

© 2014 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6900) Medical optics and biotechnology : Three-dimensional microscopy

ToC Category:
Cardiovascular Applications

Original Manuscript: June 6, 2014
Revised Manuscript: July 14, 2014
Manuscript Accepted: July 18, 2014
Published: July 28, 2014

Daniel X. Hammer, Andrea Lozzi, Erkinay Abliz, Noah Greenbaum, Anant Agrawal, Victor Krauthamer, and Cristin G. Welle, "Longitudinal vascular dynamics following cranial window and electrode implantation measured with speckle variance optical coherence angiography," Biomed. Opt. Express 5, 2823-2836 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. J. Srinivasan, J. Y. Jiang, M. A. Yaseen, H. Radhakrishnan, W. Wu, S. Barry, A. E. Cable, and D. A. Boas, “Rapid volumetric angiography of cortical microvasculature with optical coherence tomography,” Opt. Lett.35(1), 43–45 (2010). [CrossRef] [PubMed]
  2. H. C. Hendargo, R. Estrada, S. J. Chiu, C. Tomasi, S. Farsiu, and J. A. Izatt, “Automated non-rigid registration and mosaicing for robust imaging of distinct retinal capillary beds using speckle variance optical coherence tomography,” Biomed. Opt. Express4(6), 803–821 (2013). [CrossRef] [PubMed]
  3. G. Liu, A. J. Lin, B. J. Tromberg, and Z. Chen, “A comparison of Doppler optical coherence tomography methods,” Biomed. Opt. Express3(10), 2669–2680 (2012). [CrossRef] [PubMed]
  4. J. Fingler, D. Schwartz, C. Yang, and S. E. Fraser, “Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography,” Opt. Express15(20), 12636–12653 (2007). [CrossRef] [PubMed]
  5. B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans,” Opt. Express20(18), 20516–20534 (2012). [CrossRef] [PubMed]
  6. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express15(7), 4083–4097 (2007). [CrossRef] [PubMed]
  7. R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express17(11), 8926–8940 (2009). [CrossRef] [PubMed]
  8. V. J. Srinivasan, H. Radhakrishnan, J. Y. Jiang, S. Barry, and A. E. Cable, “Optical coherence microscopy for deep tissue imaging of the cerebral cortex with intrinsic contrast,” Opt. Express20(3), 2220–2239 (2012). [CrossRef] [PubMed]
  9. V. J. Srinivasan, H. Radhakrishnan, E. H. Lo, E. T. Mandeville, J. Y. Jiang, S. Barry, and A. E. Cable, “OCT methods for capillary velocimetry,” Biomed. Opt. Express3(3), 612–629 (2012). [CrossRef] [PubMed]
  10. H. Radhakrishnan and V. J. Srinivasan, “Compartment-resolved imaging of cortical functional hyperemia with OCT angiography,” Biomed. Opt. Express4(8), 1255–1268 (2013). [CrossRef] [PubMed]
  11. J. Lee, J. Y. Jiang, W. Wu, F. Lesage, and D. A. Boas, “Statistical intensity variation analysis for rapid volumetric imaging of capillary network flux,” Biomed. Opt. Express5(4), 1160–1172 (2014). [CrossRef] [PubMed]
  12. Y. Jia, M. R. Grafe, A. Gruber, N. J. Alkayed, and R. K. Wang, “In vivo optical imaging of revascularization after brain trauma in mice,” Microvasc. Res.81(1), 73–80 (2011). [CrossRef] [PubMed]
  13. V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadžić, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke,” PLoS ONE8(8), e71478 (2013). [CrossRef] [PubMed]
  14. L. R. Hochberg, D. Bacher, B. Jarosiewicz, N. Y. Masse, J. D. Simeral, J. Vogel, S. Haddadin, J. Liu, S. S. Cash, P. van der Smagt, and J. P. Donoghue, “Reach and grasp by people with tetraplegia using a neurally controlled robotic arm,” Nature485(7398), 372–375 (2012). [CrossRef] [PubMed]
  15. S.-P. Kim, J. D. Simeral, L. R. Hochberg, J. P. Donoghue, and M. J. Black, “Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia,” J. Neural Eng.5(4), 455–476 (2008). [CrossRef] [PubMed]
  16. S.-P. Kim, J. D. Simeral, L. R. Hochberg, J. P. Donoghue, G. M. Friehs, and M. J. Black, “Point-and-click cursor control with an intracortical neural interface system by humans with tetraplegia,” IEEE Trans. Neural Syst. Rehabil. Eng.19(2), 193–203 (2011). [CrossRef] [PubMed]
  17. D. M. Durand, M. Ghovanloo, and E. Krames, “Time to address the problems at the neural interface,” J. Neural Eng.11(2), 020201 (2014). [CrossRef] [PubMed]
  18. J. W. Judy, “Neural interfaces for upper-limb prosthesis control: opportunities to improve long-term reliability,” IEEE Pulse3(2), 57–60 (2012). [CrossRef] [PubMed]
  19. V. S. Polikov, P. A. Tresco, and W. M. Reichert, “Response of brain tissue to chronically implanted neural electrodes,” J. Neurosci. Methods148(1), 1–18 (2005). [CrossRef] [PubMed]
  20. A. Prasad, Q.-S. Xue, V. Sankar, T. Nishida, G. Shaw, W. J. Streit, and J. C. Sanchez, “Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants,” J. Neural Eng.9(5), 056015 (2012). [CrossRef] [PubMed]
  21. T. D. Kozai, A. L. Vazquez, C. L. Weaver, S.-G. Kim, and X. T. Cui, “In vivo two-photon microscopy reveals immediate microglial reaction to implantation of microelectrode through extension of processes,” J. Neural Eng.9(6), 066001 (2012). [CrossRef] [PubMed]
  22. P. Takmakov, K. Ruda, S. K. Phillips, I. S. Isayeva, V. Krauthamer, and C. G. Welle, “Rapid evaluation of the durability of cortical neural implants using accelerated aging with reactive oxygen species,” J. Neural Eng.submitted.
  23. C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol.4(2), e22 (2006). [CrossRef] [PubMed]
  24. T. Hayashi, K. Deguchi, S. Nagotani, H. Zhang, Y. Sehara, A. Tsuchiya, and K. Abe, “Cerebral ischemia and angiogenesis,” Curr. Neurovasc. Res.3(2), 119–129 (2006). [CrossRef] [PubMed]
  25. T. L. Roth, D. Nayak, T. Atanasijevic, A. P. Koretsky, L. L. Latour, and D. B. McGavern, “Transcranial amelioration of inflammation and cell death after brain injury,” Nature505(7482), 223–228 (2013). [CrossRef] [PubMed]
  26. A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009). [CrossRef] [PubMed]
  27. P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic imaging and manipulation of cells and vessels through a polished and reinforced thinned-skull,” Nat. Methods7, 981–984 (2010). [CrossRef] [PubMed]
  28. A. Y. Shih, J. D. Driscoll, P. J. Drew, N. Nishimura, C. B. Schaffer, and D. Kleinfeld, “Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain,” J. Cereb. Blood Flow Metab.32(7), 1277–1309 (2012). [CrossRef] [PubMed]
  29. T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum.79(11), 114301 (2008). [CrossRef] [PubMed]
  30. J. G. Daugman, “Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters,” J. Opt. Soc. Am. A2(7), 1160–1169 (1985). [CrossRef] [PubMed]
  31. N. A. Lassen and M. S. Christensen, “Physiology of cerebral blood flow,” Br. J. Anaesth.48(8), 719–734 (1976). [CrossRef] [PubMed]
  32. A. A. Schendel, S. Thongpang, S. K. Brodnick, T. J. Richner, B. D. B. Lindevig, L. Krugner-Higby, and J. C. Williams, “A cranial window imaging method for monitoring vascular growth around chronically implanted micro-ECoG devices,” J. Neurosci. Methods218(1), 121–130 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (33373 KB)     
» Media 2: MOV (2202 KB)     
» Media 3: MOV (766 KB)     
» Media 4: MOV (2769 KB)     
» Media 5: MOV (2089 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited