OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 8 — Aug. 1, 2014
  • pp: 2856–2869

The potential of photoacoustic microscopy as a tool to characterize the in vivo degradation of surgical sutures

Juan Aguirre, Jordi Morales-Dalmau, Lutz Funk, Francesc Jara, Pau Turon, and Turgut Durduran  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 8, pp. 2856-2869 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (26888 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The ex vivo and in vivo imaging, and quantitative characterization of the degradation of surgical sutures (∼500 μm diameter) up to ∼1cm depth is demonstrated using a custom dark-field photo-acoustic microscope (PAM). A practical algorithm is developed to accurately measure the suture diameter during the degradation process. The results from tissue simulating phantoms and mice are compared to ex vivo measurements with an optical microscope demonstrating that PAM has a great deal of potential to characterize the degradation process of surgical sutures. The implications of this work for industrial applications are discussed.

© 2014 Optical Society of America

OCIS Codes
(110.5120) Imaging systems : Photoacoustic imaging
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology

ToC Category:
Photoacoustic Imaging and Spectroscopy

Original Manuscript: May 12, 2014
Revised Manuscript: July 19, 2014
Manuscript Accepted: July 23, 2014
Published: July 29, 2014

Juan Aguirre, Jordi Morales-Dalmau, Lutz Funk, Francesc Jara, Pau Turon, and Turgut Durduran, "The potential of photoacoustic microscopy as a tool to characterize the in vivo degradation of surgical sutures," Biomed. Opt. Express 5, 2856-2869 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. A. Patel and E. Thomas, “Sutures, ligatures and staples,” Surgery23, 56–60 (2005).
  2. M. E. Moreira and V. J. Markovchik., “Wound management,” Emer. Med.Clin. N.Am25, 873–899 (2007).
  3. P. Palma, C. Riccetto, R. Fraga, R. Miaoka, and A. Prando, “Dynamic evaluation of pelvic floor reconstructive surgery using radiopadue meshes and three-dimensional helical ct,” International Braz. J. Urol36, 209–217 (2010). [CrossRef]
  4. I. Sandaite, F. Claus, A. Mullen, D. De Ridder, and J. Depreset, “Experimental mri-contrast imaging of suture and mesh materials with fe3o4 -containing polivinylidenefluoride polymers designed for pelvic floor surgery,” Neurourology and Urodynamics30, 1114–1115 (2011).
  5. F. S. Foster, C. J. Pavlin, K. A. Harasiewicz, D. A. Christopher, and D. H. Turnbull, “Advances in ultrasound biomicroscopy,” Ultrasound Med Biol26, 1–27 (2000). [CrossRef] [PubMed]
  6. O. Gilleard, D. Silver, Z. Ahmad, and V. Devaraj, “The accuracy of ultrasound in evaluating closed flexor tendon ruptures,” Eur. J. Plast. Surg.33, 71–74 (2010).
  7. D. M. El-Sherif and M. A. Wheatley, “Development of a novel method for synthesis of a polymeric ultrasound contrast agent,” J. Biomed. Mater. Res.66A, 347–355 (2003). [CrossRef]
  8. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science335, 1458–1462 (2012). [CrossRef] [PubMed]
  9. D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat Protoc6, 1121–1129 (2011). [CrossRef] [PubMed]
  10. V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat Methods7, 603–614 (2010). [CrossRef] [PubMed]
  11. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat Photonics3, 503–509 (2009). [CrossRef]
  12. E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “In vivo high-resolution 3d photoacoustic imaging of superficial vascular anatomy,” Phys Med Biol54, 1035–1046 (2009). [CrossRef] [PubMed]
  13. M. L. Li, H. E. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt Lett31, 474–476 (2006). [CrossRef] [PubMed]
  14. J. Gateau, M. A. Caballero, A. Dima, and V. Ntziachristos, “Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: whole-body tomographic system for small animals,” Med Phys40, 013302 (2013). [CrossRef] [PubMed]
  15. H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat Protoc2, 797–804 (2007). [CrossRef] [PubMed]
  16. H. F. Zhang, K. Maslov, M. L. Li, G. Stoica, and L. V. Wang, “In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy,” Opt Express14, 9317–9323 (2006). [CrossRef] [PubMed]
  17. K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt Lett30, 625–627 (2005). [CrossRef] [PubMed]
  18. X. Cai, C. Kim, M. Pramanik, and L. V. Wang, “Photoacoustic tomography of foreign bodies in soft biological tissue,” Journal of Biomedical Optics16, 046017 (2011). [CrossRef] [PubMed]
  19. B. E. Treeby and B. T. Cox, “k-wave: Matlab toolbox for the simulation and reconstruction of photoacoustic wave fields,” J Biomed Opt15, 021314 (2010). [CrossRef] [PubMed]
  20. C. G. Hoelen and F. F. de Mul, “A new theoretical approach to photoacoustic signal generation,” J Acoust Soc Am106, 11 (1999).
  21. K. Wang, B. Su, P. Brecht, A. Oraevsky, and M. Anastasio, “An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography,” IEEE Trans Med Imaging30, 203–214 (2012). [CrossRef]
  22. L. Wang, Biomedical Optics: Principles and Imaging (Wiley, Hoboken, New Jersey, 2007).
  23. D. Queiros, X. L. Dean-Ben, A. Buehler, D. Razansky, A. Rosenthal, and V. Ntziachristos, “Modeling the shape of cylindrically focused transducers in three-dimensional optoacoustic tomography,” J Biomed Opt18, 76014 (2013). [CrossRef]
  24. J. Aguirre, A. Giannoula, T. Minagawa, L. Funk, P. Turon, and T. Durduran, “A low memory cost model based reconstruction algorithm exploting translational symmetry for photoacoustic microscopy,” Biomed Opt Express4, 2813 (2013). [CrossRef]
  25. R. L. Reis and J. S. Roman, Biodegradable Systems in Tissue Engineering and Regenerative Medicine (CRC Press, 2004). [CrossRef]
  26. E. K. Odermatt, L. Funk, R. Bargon, D. P. Martin, S. Rizk, and S. F. Williams, “Monomax suture: A new long-term absorbable monofilament suture made from poly-4-hydroxybutyrate,” International Journal of Polymer Science2012216137 (2012). [CrossRef]
  27. T. Durduran, R. Choe, W. B. Baker, and A. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010). [CrossRef]
  28. A. Rosenthal, V. Ntziachristos, and D. Razansky, “Model-based optoacoustic inversion with arbitrary-shape detectors,” Med Phys38, 4285–4295 (2011). [CrossRef] [PubMed]
  29. M. A. Araque Caballero, A. Rosenthal, J. Gateau, D. Razansky, and V. Ntziachristos, “Model-based optoacoustic imaging using focused detector scanning,” Opt Lett37, 4080–4082 (2012). [CrossRef] [PubMed]
  30. G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J Acoust Soc Am112, 1536–1544 (2002). [CrossRef] [PubMed]
  31. A. Rosenthal, V. Ntziachristos, and D. Razansky, “Optoacoustic methods for frequency calibration of ultrasonic sensors,” IEEE Trans Ultrason Ferroelectr Freq Control58, 316–326 (2011). [CrossRef] [PubMed]
  32. X. L. Dean-Ben, D. Razansky, and V. Ntziachristos, “The effects of acoustic attenuation in optoacoustic signals,” Physics in Medicine and Biology56, 6129 (2011). [CrossRef] [PubMed]
  33. G. Ku and L. V. Wang, “Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent,” Opt Lett30, 507–509 (2005). [CrossRef] [PubMed]
  34. L. V. Wang and S. Hu, “Photoacoustic tomography: In vivo imaging from organelles to organs,” Science335, 1458–1462 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited