OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 9 — Sep. 1, 2014
  • pp: 2870–2882

Dermascope guided multiple reference optical coherence tomography

Roshan Dsouza, Hrebesh Subhash, Kai Neuhaus, Josh Hogan, Carol Wilson, and Martin Leahy  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 9, pp. 2870-2882 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2007 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we report the feasibility of integrating a novel low cost optical coherence tomography (OCT) system with a dermascope for point-of-care applications. The proposed OCT system is based on an enhanced time-domain optical coherence tomographic system, called multiple reference OCT (MR-OCT), which uses a single miniature voice coil actuator and a partial mirror for extending the axial scan range. The system can simultaneously register both the superficial dermascope image and the depth-resolved OCT sub-surface information by an interactive beam steering method. A practitioner is able to obtain the depth resolved information of the point of interest by simply using the mouse cursor. The proposed approach of combining a dermascope with a low cost OCT provides a unique powerful optical imaging modality for a range of dermatological applications. Hand-held dermascopic OCT devices would also enable point of care and remote health monitoring.

© 2014 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(110.4500) Imaging systems : Optical coherence tomography
(130.3120) Integrated optics : Integrated optics devices
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(100.3175) Image processing : Interferometric imaging

ToC Category:
Optical Coherence Tomography

Original Manuscript: June 16, 2014
Revised Manuscript: July 20, 2014
Manuscript Accepted: July 28, 2014
Published: August 1, 2014

Virtual Issues
Topics in Biomedical Optics from OSA's BIOMED 2014 Conference (2014) Biomedical Optics Express

Roshan Dsouza, Hrebesh Subhash, Kai Neuhaus, Josh Hogan, Carol Wilson, and Martin Leahy, "Dermascope guided multiple reference optical coherence tomography," Biomed. Opt. Express 5, 2870-2882 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Feng, R. Caire, B. Cortazar, M. Turan, A. Wong, and A. Ozcan, “Immunochromatographic diagnostic test analysis using Google Glass,” ACS Nano8(3), 3069–3079 (2014). [CrossRef] [PubMed]
  2. E. Jonathan and M. J. Leahy, “Investigating a smartphone imaging unit for photoplethysmography,” Physiol. Meas.31(11), N79–N83 (2010). [CrossRef] [PubMed]
  3. J. Bennett, “Top Ten Medical Uses of the iPhone”, http://internetmedicine.com/2012/12/14/top-ten-medical-uses-of-the-iphone/ , Accessed: 12th December (2013).
  4. R. P. Braun, J. H. Saurat, and L. E. French, “Dermoscopy of pigmented lesions: a valuable tool in the diagnosis of melanoma,” Swiss Med. Wkly.134(7-8), 83–90 (2004). [PubMed]
  5. R. P. Braun, H. S. Rabinovitz, M. Oliviero, A. W. Kopf, and J. H. Saurat, “Dermoscopy of pigmented skin lesions,” J. Am. Acad. Dermatol.52(1), 109–121 (2005). [CrossRef] [PubMed]
  6. A. Lallas, G. Argenziano, Z. Apalla, J. Y. Gourhant, P. Zaballos, V. Di Lernia, E. Moscarella, C. Longo, and I. Zalaudek, “Dermoscopic patterns of common facial inflammatory skin diseases,” J. Eur. Acad. Dermatol. Venereol.28(5), 609–614 (2014). [CrossRef] [PubMed]
  7. A. Lallas, A. Kyrgidis, T. G. Tzellos, Z. Apalla, E. Karakyriou, A. Karatolias, I. Lefaki, E. Sotiriou, D. Ioannides, G. Argenziano, and I. Zalaudek, “Accuracy of dermoscopic criteria for the diagnosis of psoriasis, dermatitis, lichen planus and pityriasis rosea,” Br. J. Dermatol.166(6), 1198–1205 (2012). [CrossRef] [PubMed]
  8. K. Peris, T. Micantonio, D. Piccolo, and M. C. Fargnoli, “Dermoscopic features of actinic keratosis,” J. Dtsch. Dermatol. Ges.5(11), 970–975 (2007). [CrossRef] [PubMed]
  9. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003). [CrossRef]
  10. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003). [CrossRef] [PubMed]
  11. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003). [CrossRef] [PubMed]
  12. V. D. Nguyen, N. Weiss, W. Beeker, M. Hoekman, A. Leinse, R. G. Heideman, T. G. van Leeuwen, and J. Kalkman, “Integrated-optics-based swept-source optical coherence tomography,” Opt. Lett.37(23), 4820–4822 (2012). [CrossRef] [PubMed]
  13. B. I. Akca, B. Považay, A. Alex, K. Wörhoff, R. M. de Ridder, W. Drexler, and M. Pollnau, “Miniature spectrometer and beam splitter for an optical coherence tomography on a silicon chip,” Opt. Express21(14), 16648–16656 (2013). [CrossRef] [PubMed]
  14. E. Pennings, G. D. Khoe, M. K. Smit, and T. Staring, “Integrated-optic versus microoptic devices for fiber-optic telecommunications systems: A comparison,” IEEE J. Sel. Top. Quantum Electron.2(2), 151–164 (1996). [CrossRef]
  15. V. D. Nguyen, B. I. Akca, K. Wörhoff, R. M. de Ridder, M. Pollnau, T. G. van Leeuwen, and J. Kalkman, “Spectral domain optical coherence tomography imaging with an integrated optics spectrometer,” Opt. Lett.36(7), 1293–1295 (2011). [CrossRef] [PubMed]
  16. Insight, “Small (and shrinking) Form Factor”, http://sweptlaser.com/small-form-factor/ , Accessed: 10th July (2014).
  17. J. Hogan, “Multiple-Reference Non-Invasive Analysis System,” U. S. Patent 7,526,329 (28th April 2009).
  18. J. Hogan, “Frequency Resolved Imaging System”, U.S. Patent 7,751,862 (6th July 2010).
  19. A. G. Podoleanu, G. M. Dobre, D. J. Webb, and D. A. Jackson, “Simultaneous en-face imaging of two layers in the human retina by low-coherence reflectometry,” Opt. Lett.22(13), 1039–1041 (1997). [CrossRef] [PubMed]
  20. M. Zurauskas, J. Rogers, and A. G. Podoleanu, “Simultaneous multiple-depths en-face optical coherence tomography using multiple signal excitation of acousto-optic deflectors,” Opt. Express21(2), 1925–1936 (2013). [CrossRef] [PubMed]
  21. Nano optic devices, “Expanding light possibilities”, http://www.nanoopticdevices.com/ , Accessed: 11th July (2014).
  22. Tornado spectral systems, “Spectrometer-on-chip for OCT”, http://tornado-spectral.com/solutions/spectrometer-on-chip-oct , Accessed: 11th July (2014).
  23. A. Kasukurti, M. Potcoava, S. A. Desai, C. Eggleton, and D. W. M. Marr, “Single-cell isolation using a DVD optical pickup,” Opt. Express19(11), 10377–10386 (2011). [CrossRef] [PubMed]
  24. D. P. Popescu, L.-P. Choo-Smith, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev.3(3), 155–169 (2011). [CrossRef]
  25. K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.17(6), 066012 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MPG (3972 KB)     
» Media 2: MPG (738 KB)     
» Media 3: MPG (3826 KB)     

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited