OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 9 — Sep. 1, 2014
  • pp: 2883–2895

Comprehensive spectral endoscopy of topically applied SERS nanoparticles in the rat esophagus

Yu W. Wang, Altaz Khan, Steven Y. Leigh, Danni Wang, Ye Chen, Daphne Meza, and Jonathan T.C. Liu  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 9, pp. 2883-2895 (2014)
http://dx.doi.org/10.1364/BOE.5.002883


View Full Text Article

Enhanced HTML    Acrobat PDF (7733 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The early detection and biological investigation of esophageal cancer would benefit from the development of advanced imaging techniques to screen for the molecular changes that precede and accompany the onset of cancer. Surface-enhanced Raman scattering (SERS) nanoparticles (NPs) have the potential to improve cancer detection and the investigation of cancer progression through the sensitive and multiplexed phenotyping of cell-surface biomarkers. Here, a miniature endoscope featuring rotational scanning and axial pull back has been developed for 2D spectral imaging of SERS NPs topically applied on the lumenal surface of the rat esophagus. Raman signals from low-pM concentrations of SERS NP mixtures are demultiplexed in real time to accurately calculate the concentration and ratio of the NPs. Ex vivo and in vivo experiments demonstrate the feasibility of topical application and imaging of multiplexed SERS NPs along the entire length of the rat esophagus.

© 2014 Optical Society of America

OCIS Codes
(110.2350) Imaging systems : Fiber optics imaging
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(170.2680) Medical optics and biotechnology : Gastrointestinal
(170.5660) Medical optics and biotechnology : Raman spectroscopy
(160.4236) Materials : Nanomaterials

ToC Category:
Endoscopes, Catheters and Micro-Optics

History
Original Manuscript: March 25, 2014
Revised Manuscript: June 11, 2014
Manuscript Accepted: July 24, 2014
Published: August 1, 2014

Citation
Yu W. Wang, Altaz Khan, Steven Y. Leigh, Danni Wang, Ye Chen, Daphne Meza, and Jonathan T.C. Liu, "Comprehensive spectral endoscopy of topically applied SERS nanoparticles in the rat esophagus," Biomed. Opt. Express 5, 2883-2895 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-9-2883


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. M. Parkin, F. I. Bray, and S. S. Devesa, “Cancer burden in the year 2000. The global picture,” Eur. J. Cancer37(Suppl 8), 4–66 (2001). [CrossRef] [PubMed]
  2. R. F. Souza, “Molecular and biologic basis of upper gastrointestinal malignancy--esophageal carcinoma,” Surg. Oncol. Clin. N. Am.11(2), 257–272 (2002). [CrossRef] [PubMed]
  3. J. A. Evans, D. S. Early, V. Chandraskhara, K. V. Chathadi, R. D. Fanelli, D. A. Fisher, K. Q. Foley, J. H. Hwang, T. L. Jue, S. F. Pasha, R. Sharaf, A. K. Shergill, J. A. Dominitz, B. D. Cash, and ASGE Standards of Practice CommitteeAmerican Society for Gastrointestinal Endoscopy, “The role of endoscopy in the assessment and treatment of esophageal cancer,” Gastrointest. Endosc.77(3), 328–334 (2013). [CrossRef] [PubMed]
  4. J. C. Layke and P. P. Lopez, “Esophageal cancer: a review and update,” Am. Fam. Physician73(12), 2187–2194 (2006). [PubMed]
  5. A. P. Polednak, “Trends in survival for both histologic types of esophageal cancer in US surveillance, epidemiology and end results areas,” Int. J. Cancer105(1), 98–100 (2003). [CrossRef] [PubMed]
  6. M. Younes, D. E. Henson, A. Ertan, and C. C. Miller, “Incidence and survival trends of esophageal carcinoma in the United States: racial and gender differences by histological type,” Scand. J. Gastroenterol.37(12), 1359–1365 (2002). [CrossRef] [PubMed]
  7. M. B. Sturm, B. P. Joshi, S. Lu, C. Piraka, S. Khondee, B. J. Elmunzer, R. S. Kwon, D. G. Beer, H. D. Appelman, D. K. Turgeon, and T. D. Wang, “Targeted imaging of esophageal neoplasia with a fluorescently labeled peptide: first-in-human results,” Sci. Transl. Med.5(184), 184ra61 (2013). [CrossRef] [PubMed]
  8. P.-L. Hsiung, J. Hardy, S. Friedland, R. Soetikno, C. B. Du, A. P. Wu, P. Sahbaie, J. M. Crawford, A. W. Lowe, C. H. Contag, and T. D. Wang, “Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy,” Nat. Med.14(4), 454–458 (2008). [CrossRef] [PubMed]
  9. R. Kiesslich, M. Goetz, M. Vieth, P. R. Galle, and M. F. Neurath, “Technology insight: confocal laser endoscopy for in vivo diagnosis of colorectal cancer,” Nat. Clin. Pract. Oncol.4(8), 480–490 (2007). [CrossRef] [PubMed]
  10. E. L. Bird-Lieberman, A. A. Neves, P. Lao-Sirieix, M. O’Donovan, M. Novelli, L. B. Lovat, W. S. Eng, L. K. Mahal, K. M. Brindle, and R. C. Fitzgerald, “Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett’s esophagus,” Nat. Med.18(2), 315–321 (2012). [CrossRef] [PubMed]
  11. T. I. Samoylova, N. E. Morrison, L. P. Globa, and N. R. Cox, “Peptide phage display: opportunities for development of personalized anti-cancer strategies,” Anticancer. Agents Med. Chem.6(1), 9–17 (2006). [PubMed]
  12. R. Weissleder, B. D. Ross, A. Rehemtulla, and S. S. Gambhir, Molecular Imaging: Principles and Practice (People's Medical Publishing House, 2010).
  13. A. Hellebust and R. Richards-Kortum, “Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics,” Nanomedicine (Lond)7(3), 429–445 (2012). [CrossRef] [PubMed]
  14. Q. T. Nguyen and R. Y. Tsien, “Fluorescence-guided surgery with live molecular navigation--a new cutting edge,” Nat. Rev. Cancer13(9), 653–662 (2013). [CrossRef] [PubMed]
  15. Y. Q. Wang, B. Yan, and L. X. Chen, “SERS Tags: Novel Optical Nanoprobes for Bioanalysis,” Chem. Rev.113(3), 1391–1428 (2013). [CrossRef] [PubMed]
  16. S. P. Mulvaney, M. D. Musick, C. D. Keating, and M. J. Natan, “Glass-Coated, Analyte-Tagged Nanoparticles: A New Tagging System Based on Detection with Surface-Enhanced Raman Scattering,” Langmuir19(11), 4784–4790 (2003). [CrossRef]
  17. M. Y. Sha, H. Xu, M. J. Natan, and R. Cromer, “Surface-enhanced Raman scattering tags for rapid and homogeneous detection of circulating tumor cells in the presence of human whole blood,” J. Am. Chem. Soc.130(51), 17214–17215 (2008). [CrossRef] [PubMed]
  18. C. L. Zavaleta, B. R. Smith, I. Walton, W. Doering, G. Davis, B. Shojaei, M. J. Natan, and S. S. Gambhir, “Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(32), 13511–13516 (2009). [CrossRef] [PubMed]
  19. C. L. Zavaleta, E. Garai, J. T. C. Liu, S. Sensarn, M. J. Mandella, D. Van de Sompel, S. Friedland, J. Van Dam, C. H. Contag, and S. S. Gambhir, “A Raman-based endoscopic strategy for multiplexed molecular imaging,” Proc. Natl. Acad. Sci. U.S.A.110(25), E2288–E2297 (2013). [CrossRef] [PubMed]
  20. S. E. Bohndiek, A. Wagadarikar, C. L. Zavaleta, D. Van de Sompel, E. Garai, J. V. Jokerst, S. Yazdanfar, and S. S. Gambhir, “A small animal Raman instrument for rapid, wide-area, spectroscopic imaging,” Proc. Natl. Acad. Sci. U.S.A.110(30), 12408–12413 (2013). [CrossRef] [PubMed]
  21. A. M. Mohs, M. C. Mancini, S. Singhal, J. M. Provenzale, B. Leyland-Jones, M. D. Wang, and S. Nie, “Hand-held spectroscopic device for in vivo and intraoperative tumor detection: contrast enhancement, detection sensitivity, and tissue penetration,” Anal. Chem.82(21), 9058–9065 (2010). [CrossRef] [PubMed]
  22. P. Z. McVeigh, R. J. Mallia, I. Veilleux, and B. C. Wilson, “Widefield quantitative multiplex surface enhanced Raman scattering imaging in vivo,” J. Biomed. Opt.18(4), 046011 (2013). [CrossRef] [PubMed]
  23. E. Garai, S. Sensarn, C. L. Zavaleta, D. V. d. Sompel, N. O. Loewke, M. J. Mandella, S. S. Gambhir, and C. H. Contag, “High-sensitivity, real-time, ratiometric imaging of surface-enhanced Raman scattering nanoparticles with a clinically translatable Raman endoscope device,” J. Biomed. Opt.18, 096008 (2013).
  24. R. J. Mallia, P. Z. McVeigh, I. Veilleux, and B. C. Wilson, “Filter-based method for background removal in high-sensitivity wide-field-surface-enhanced Raman scattering imaging in vivo,” J. Biomed. Opt.17(7), 076017 (2012). [CrossRef] [PubMed]
  25. J. V. Jokerst, Z. Miao, C. Zavaleta, Z. Cheng, and S. S. Gambhir, “Affibody-Functionalized Gold-Silica Nanoparticles for Raman Molecular Imaging of the Epidermal Growth Factor Receptor,” Small7(5), 625–633 (2011). [CrossRef] [PubMed]
  26. X. Wang, X. Qian, J. J. Beitler, Z. G. Chen, F. R. Khuri, M. M. Lewis, H. J. C. Shin, S. Nie, and D. M. Shin, “Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles,” Cancer Res.71(5), 1526–1532 (2011). [CrossRef] [PubMed]
  27. S. Lee, H. Chon, S.-Y. Yoon, E. K. Lee, S.-I. Chang, D. W. Lim, and J. Choo, “Fabrication of SERS-fluorescence dual modal nanoprobes and application to multiplex cancer cell imaging,” Nanoscale4(1), 124–129 (2011). [CrossRef] [PubMed]
  28. L. Sun, K.-B. Sung, C. Dentinger, B. Lutz, L. Nguyen, J. Zhang, H. Qin, M. Yamakawa, M. Cao, Y. Lu, A. J. Chmura, J. Zhu, X. Su, A. A. Berlin, S. Chan, and B. Knudsen, “Composite organic-inorganic nanoparticles as Raman labels for tissue analysis,” Nano Lett.7(2), 351–356 (2007). [CrossRef] [PubMed]
  29. X. Su, J. Zhang, L. Sun, T. W. Koo, S. Chan, N. Sundararajan, M. Yamakawa, and A. A. Berlin, “Composite organic-inorganic nanoparticles (COINs) with chemically encoded optical signatures,” Nano Lett.5(1), 49–54 (2005). [CrossRef] [PubMed]
  30. Y. W. Wang, A. Khan, M. Som, D. Wang, Y. Chen, S. Y. Leigh, D. Meza, P. Z. McVeigh, B. C. Wilson, and J. T. C. Liu, “Rapid ratiometric biomarker detection with topically applied SERS nanoparticles,” Technology (Singap)2(2), 118–132 (2014). [CrossRef] [PubMed]
  31. K. M. Tichauer, K. S. Samkoe, K. J. Sexton, J. R. Gunn, T. Hasan, and B. W. Pogue, “Improved tumor contrast achieved by single time point dual-reporter fluorescence imaging,” J. Biomed. Opt.17(6), 066001 (2012). [CrossRef] [PubMed]
  32. K. M. Tichauer, K. S. Samkoe, K. J. Sexton, S. K. Hextrum, H. H. Yang, W. S. Klubben, J. R. Gunn, T. Hasan, and B. W. Pogue, “In vivo quantification of tumor receptor binding potential with dual-reporter molecular imaging,” Mol. Imaging Biol.14(5), 584–592 (2012). [CrossRef] [PubMed]
  33. M. F. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med.18(5), 829–834 (2012). [CrossRef] [PubMed]
  34. J. T. C. Liu, M. W. Helms, M. J. Mandella, J. M. Crawford, G. S. Kino, and C. H. Contag, “Quantifying Cell-Surface Biomarker Expression in Thick Tissues with Ratiometric Three-Dimensional Microscopy,” Biophys. J.96(6), 2405–2414 (2009). [CrossRef] [PubMed]
  35. T. D. Wang, S. Friedland, P. Sahbaie, R. Soetikno, P. L. Hsiung, J. T. C. Liu, J. M. Crawford, and C. H. Contag, “Functional Imaging of Colonic Mucosa With a Fibered Confocal Microscope for Real-Time In Vivo Pathology,” Clin. Gastroenterol. Hepatol.5(11), 1300–1305 (2007). [CrossRef] [PubMed]
  36. A. S. Thakor, R. Luong, R. Paulmurugan, F. I. Lin, P. Kempen, C. Zavaleta, P. Chu, T. F. Massoud, R. Sinclair, and S. S. Gambhir, “The fate and toxicity of Raman-active silica-gold nanoparticles in mice,” Sci. Transl. Med.3(79), 79ra33 (2011). [CrossRef] [PubMed]
  37. C. L. Zavaleta, K. B. Hartman, Z. Miao, M. L. James, P. Kempen, A. S. Thakor, C. H. Nielsen, R. Sinclair, Z. Cheng, and S. S. Gambhir, “Preclinical evaluation of Raman nanoparticle biodistribution for their potential use in clinical endoscopy imaging,” Small7(15), 2232–2240 (2011). [CrossRef] [PubMed]
  38. G. D. Stoner and A. Gupta, “Etiology and chemoprevention of esophageal squamous cell carcinoma,” Carcinogenesis22(11), 1737–1746 (2001). [CrossRef] [PubMed]
  39. G. D. Stoner and L. S. Wang, “Chemoprevention of esophageal squamous cell carcinoma with berries,” Top. Curr. Chem.329, 1–20 (2012). [CrossRef] [PubMed]
  40. T. Hori, Y. Yamashita, M. Ohira, Y. Matsumura, K. Muguruma, and K. Hirakawa, “A novel orthotopic implantation model of human esophageal carcinoma in nude rats: CD44H mediates cancer cell invasion in vitro and in vivo,” Int. J. Cancer92(4), 489–496 (2001). [CrossRef] [PubMed]
  41. S. Y. Leigh, M. Som, and J. T. C. Liu, “Method for Assessing the Reliability of Molecular Diagnostics Based on Multiplexed SERS-Coded Nanoparticles,” PLoS ONE8(4), e62084 (2013). [CrossRef] [PubMed]
  42. W. E. Doering, M. E. Piotti, M. J. Natan, and R. G. Freeman, “SERS as a Foundation for Nanoscale, Optically Detected Biological Labels,” Adv. Mater.19(20), 3100–3108 (2007). [CrossRef]
  43. B. R. Lutz, C. E. Dentinger, L. N. Nguyen, L. Sun, J. Zhang, A. N. Allen, S. Chan, and B. S. Knudsen, “Spectral analysis of multiplex Raman probe signatures,” ACS Nano2(11), 2306–2314 (2008). [CrossRef] [PubMed]
  44. E. L. Bird-Lieberman, A. A. Neves, P. Lao-Sirieix, M. O’Donovan, M. Novelli, L. B. Lovat, W. S. Eng, L. K. Mahal, K. M. Brindle, and R. C. Fitzgerald, “Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett’s esophagus,” Nat. Med.18(2), 315–321 (2012). [CrossRef] [PubMed]
  45. B. D. Chithrani, A. A. Ghazani, and W. C. W. Chan, “Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells,” Nano Lett.6(4), 662–668 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Supplementary Material


» Media 1: AVI (3153 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited