OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 9 — Sep. 1, 2014
  • pp: 2988–3000

Computed optical interferometric tomography for high-speed volumetric cellular imaging

Yuan-Zhi Liu, Nathan D. Shemonski, Steven G. Adie, Adeel Ahmad, Andrew J. Bower, P. Scott Carney, and Stephen A. Boppart  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 9, pp. 2988-3000 (2014)
http://dx.doi.org/10.1364/BOE.5.002988


View Full Text Article

Enhanced HTML    Acrobat PDF (12393 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Three-dimensional high-resolution imaging methods are important for cellular-level research. Optical coherence microscopy (OCM) is a low-coherence-based interferometry technology for cellular imaging with both high axial and lateral resolution. Using a high-numerical-aperture objective, OCM normally has a shallow depth of field and requires scanning the focus through the entire region of interest to perform volumetric imaging. With a higher-numerical-aperture objective, the image quality of OCM is affected by and more sensitive to aberrations. Interferometric synthetic aperture microscopy (ISAM) and computational adaptive optics (CAO) are computed imaging techniques that overcome the depth-of-field limitation and the effect of optical aberrations in optical coherence tomography (OCT), respectively. In this work we combine OCM with ISAM and CAO to achieve high-speed volumetric cellular imaging. Experimental imaging results of ex vivo human breast tissue, ex vivo mouse brain tissue, in vitro fibroblast cells in 3D scaffolds, and in vivo human skin demonstrate the significant potential of this technique for high-speed volumetric cellular imaging.

© 2014 Optical Society of America

OCIS Codes
(090.1000) Holography : Aberration compensation
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.6900) Medical optics and biotechnology : Three-dimensional microscopy
(180.3170) Microscopy : Interference microscopy
(110.1758) Imaging systems : Computational imaging
(100.3200) Image processing : Inverse scattering

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: June 18, 2014
Revised Manuscript: August 5, 2014
Manuscript Accepted: August 6, 2014
Published: August 8, 2014

Virtual Issues
Topics in Biomedical Optics from OSA's BIOMED 2014 Conference (2014) Biomedical Optics Express

Citation
Yuan-Zhi Liu, Nathan D. Shemonski, Steven G. Adie, Adeel Ahmad, Andrew J. Bower, P. Scott Carney, and Stephen A. Boppart, "Computed optical interferometric tomography for high-speed volumetric cellular imaging," Biomed. Opt. Express 5, 2988-3000 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-9-2988


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol.104(6), 946–952 (1995). [CrossRef] [PubMed]
  2. Y. Zhao, B. W. Graf, E. J. Chaney, Z. Mahmassani, E. Antoniadou, R. Devolder, H. Kong, M. D. Boppart, and S. A. Boppart, “Integrated multimodal optical microscopy for structural and functional imaging of engineered and natural skin,” J. Biophotonics5(5-6), 437–448 (2012). [CrossRef] [PubMed]
  3. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  4. F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics5(12), 744–747 (2011). [CrossRef] [PubMed]
  5. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett.19(8), 590–592 (1994). [CrossRef] [PubMed]
  6. S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med.4(7), 861–865 (1998). [CrossRef] [PubMed]
  7. V. J. Srinivasan, H. Radhakrishnan, J. Y. Jiang, S. Barry, and A. E. Cable, “Optical coherence microscopy for deep tissue imaging of the cerebral cortex with intrinsic contrast,” Opt. Express20(3), 2220–2239 (2012). [CrossRef] [PubMed]
  8. J. A. Izatt, M. D. Kulkarni, K. Kobayashi, and M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron.2(4), 1017–1028 (1996). [CrossRef]
  9. R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express13(26), 10523–10538 (2005). [CrossRef] [PubMed]
  10. M. Akiba and K. P. Chan, “In vivo video-rate cellular-level full-field optical coherence tomography,” J. Biomed. Opt.12(6), 064024 (2007). [CrossRef] [PubMed]
  11. A. D. Aguirre, J. Sawinski, S.-W. Huang, C. Zhou, W. Denk, and J. G. Fujimoto, “High speed optical coherence microscopy with autofocus adjustment and a miniaturized endoscopic imaging probe,” Opt. Express18(5), 4222–4239 (2010). [CrossRef] [PubMed]
  12. J. P. Rolland, P. Meemon, S. Murali, K. P. Thompson, and K. S. Lee, “Gabor-based fusion technique for optical coherence microscopy,” Opt. Express18(4), 3632–3642 (2010). [CrossRef] [PubMed]
  13. B. A. Standish, K. K. C. Lee, A. Mariampillai, N. R. Munce, M. K. K. Leung, V. X. D. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol.55(3), 615–622 (2010). [CrossRef] [PubMed]
  14. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett.27(4), 243–245 (2002). [CrossRef] [PubMed]
  15. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett.31(16), 2450–2452 (2006). [CrossRef] [PubMed]
  16. L. Liu, C. Liu, W. C. Howe, C. J. R. Sheppard, and N. Chen, “Binary-phase spatial filter for real-time swept-source optical coherence microscopy,” Opt. Lett.32(16), 2375–2377 (2007). [CrossRef] [PubMed]
  17. D. Hillmann, C. Lührs, T. Bonin, P. Koch, and G. Hüttmann, “Holoscopy--holographic optical coherence tomography,” Opt. Lett.36(13), 2390–2392 (2011). [CrossRef] [PubMed]
  18. J. Mo, M. de Groot, and J. F. de Boer, “Focus-extension by depth-encoded synthetic aperture in optical coherence tomography,” Opt. Express21(8), 10048–10061 (2013). [CrossRef] [PubMed]
  19. Y. Yasuno, J.-I. Sugisaka, Y. Sando, Y. Nakamura, S. Makita, M. Itoh, and T. Yatagai, “Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography,” Opt. Express14(3), 1006–1020 (2006). [CrossRef] [PubMed]
  20. L. Yu, B. Rao, J. Zhang, J. Su, Q. Wang, S. Guo, and Z. Chen, “Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method,” Opt. Express15(12), 7634–7641 (2007). [CrossRef] [PubMed]
  21. A. Kumar, W. Drexler, and R. A. Leitgeb, “Numerical focusing methods for full field OCT: a comparison based on a common signal model,” Opt. Express22(13), 16061–16078 (2014). [CrossRef] [PubMed]
  22. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys.3(2), 129–134 (2007). [CrossRef]
  23. T. S. Ralston, S. G. Adie, D. L. Marks, S. A. Boppart, and P. S. Carney, “Cross-validation of interferometric synthetic aperture microscopy and optical coherence tomography,” Opt. Lett.35(10), 1683–1685 (2010). [CrossRef] [PubMed]
  24. B. J. Davis, S. C. Schlachter, D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy,” J. Opt. Soc. Am. A24(9), 2527–2542 (2007). [CrossRef] [PubMed]
  25. D. L. Marks, B. J. Davis, S. A. Boppart, and P. Carney, “Partially coherent illumination in full-field interferometric synthetic aperture microscopy,” J. Opt. Soc. Am. A26(2), 376–386 (2009). [CrossRef] [PubMed]
  26. D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Inverse scattering for frequency-scanned full-field optical coherence tomography,” J. Opt. Soc. Am. A24(4), 1034–1041 (2007). [CrossRef] [PubMed]
  27. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Real-time interferometric synthetic aperture microscopy,” Opt. Express16(4), 2555–2569 (2008). [CrossRef] [PubMed]
  28. A. Ahmad, N. D. Shemonski, S. G. Adie, H. S. Kim, W. M. Hwu, P. S. Carney, and S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photonics7(6), 444–448 (2013). [CrossRef] [PubMed]
  29. N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods7(2), 141–147 (2010). [CrossRef] [PubMed]
  30. W. Lo, Y. Sun, S.-J. Lin, S.-H. Jee, and C.-Y. Dong, “Spherical aberration correction in multiphoton fluorescence imaging using objective correction collar,” J. Biomed. Opt.10(3), 034006 (2005). [CrossRef] [PubMed]
  31. Y. Jian, R. J. Zawadzki, and M. V. Sarunic, “Adaptive optics optical coherence tomography for in vivo mouse retinal imaging,” J. Biomed. Opt.18(5), 056007 (2013). [CrossRef] [PubMed]
  32. S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A.109(19), 7175–7180 (2012). [CrossRef] [PubMed]
  33. S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. Scott Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett.101(22), 221117 (2012). [CrossRef] [PubMed]
  34. A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Opt. Express21(9), 10850–10866 (2013). [CrossRef] [PubMed]
  35. B. W. Graf, S. G. Adie, and S. A. Boppart, “Correction of coherence gate curvature in high numerical aperture optical coherence imaging,” Opt. Lett.35(18), 3120–3122 (2010). [CrossRef] [PubMed]
  36. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts and Company Publishers, 2005).
  37. S. G. Adie, B. W. Grafa, A. Ahmad, B. Dabarsyah, S. A. Boppart, and P. S. Carney, “The impact of aberrations on object reconstruction with interferometric synthetic aperture microscopy,” Proc. SPIE7889, 78891O (2011). [CrossRef]
  38. S. Gabarda and G. Cristóbal, “Blind image quality assessment through anisotropy,” J. Opt. Soc. Am. A24(12), B42–B51 (2007). [CrossRef] [PubMed]
  39. V. Lakshminarayanan and A. Fleck, “Zernike polynomials: a guide,” J. Mod. Opt.58(7), 545–561 (2011). [CrossRef]
  40. J. R. Fienup and J. J. Miller, “Aberration correction by maximizing generalized sharpness metrics,” J. Opt. Soc. Am. A20(4), 609–620 (2003). [CrossRef] [PubMed]
  41. G. Partadiredja, R. Miller, and D. E. Oorschot, “The number, size, and type of axons in rat subcortical white matter on left and right sides: a stereological, ultrastructural study,” J. Neurocytol.32(9), 1165–1179 (2003). [CrossRef] [PubMed]
  42. B. W. Graf and S. A. Boppart, “Multimodal in vivo skin imaging with integrated optical coherence and multiphoton microscopy,” IEEE J. Sel. Top. Quantum Electron.18(4), 1280–1286 (2012). [CrossRef]
  43. R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med.7(11), 1245–1248 (2001). [CrossRef] [PubMed]
  44. P. Corcuff, C. Bertrand, and J. L. Leveque, “Morphometry of human epidermis in vivo by real-time confocal microscopy,” Arch. Dermatol. Res.285(8), 475–481 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (14639 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited