OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 9 — Sep. 1, 2014
  • pp: 3001–3010

Full-depth epidermis tomography using a Mirau-based full-field optical coherence tomography

Chien-Chung Tsai, Chia-Kai Chang, Kuang-Yu Hsu, Tuan-Shu Ho, Ming-Yi Lin, Jeng-Wei Tjiu, and Sheng-Lung Huang  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 9, pp. 3001-3010 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2622 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



With a Gaussian-like broadband light source from high brightness Ce3+:YAG single-clad crystal fiber, a full-field optical coherence tomography using a home-designed Mirau objective realized high quality images of in vivo and excised skin tissues. With a 40 × silicone-oil-immersion Mirau objective, the achieved spatial resolutions in axial and lateral directions were 0.9 and 0.51 μm, respectively. Such a high spatial resolution enables the separation of lamellar structure of the full epidermis in both the cross-sectional and en face planes. The number of layers of stratum corneum and its thickness were quantitatively measured. This label free and non-invasive optical probe could be useful for evaluating the water barrier of skin tissue in clinics. As a preliminary in vivo experiment, the blood vessel in dermis was also observed, and the flowing of the red blood cells and location of the melanocyte were traced.

© 2014 Optical Society of America

OCIS Codes
(060.2380) Fiber optics and optical communications : Fiber optics sources and detectors
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(180.3170) Microscopy : Interference microscopy
(160.1435) Materials : Biomaterials

ToC Category:
Optical Coherence Tomography

Original Manuscript: June 9, 2014
Revised Manuscript: July 15, 2014
Manuscript Accepted: August 5, 2014
Published: August 8, 2014

Virtual Issues
Topics in Biomedical Optics from OSA's BIOMED 2014 Conference (2014) Biomedical Optics Express

Chien-Chung Tsai, Chia-Kai Chang, Kuang-Yu Hsu, Tuan-Shu Ho, Ming-Yi Lin, Jeng-Wei Tjiu, and Sheng-Lung Huang, "Full-depth epidermis tomography using a Mirau-based full-field optical coherence tomography," Biomed. Opt. Express 5, 3001-3010 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Gambichler, S. Boms, M. Stücker, A. Kreuter, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “Epidermal thickness assessed by optical coherence tomography and routine histology: preliminary results of method comparison,” J. Eur. Acad. Dermatol. Venereol.20(7), 791–795 (2006). [PubMed]
  2. J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol.37(6), 958–963 (1997). [CrossRef] [PubMed]
  3. M. S. Wu, D. J. Yee, and M. E. Sullivan, “Effect of a skin moisturizer on the water distribution in human stratum corneum,” J. Invest. Dermatol.81(5), 446–448 (1983). [CrossRef] [PubMed]
  4. K. A. Holbrook and G. F. Odland, “Regional differences in the thickness (cell layers) of the human stratum corneum: an ultrastructural analysis,” J. Invest. Dermatol.62(4), 415–422 (1974). [CrossRef] [PubMed]
  5. W. J. Choi, I. Jeon, S. G. Ahn, J. H. Yoon, S. Kim, and B. H. Lee, “Full-field optical coherence microscopy for identifying live cancer cells by quantitative measurement of refractive index distribution,” Opt. Express18(22), 23285–23295 (2010). [CrossRef] [PubMed]
  6. W. J. Choi, K. S. Park, T. J. Eom, M. K. Oh, and B. H. Lee, “Tomographic imaging of a suspending single live cell using optical tweezer-combined full-field optical coherence tomography,” Opt. Lett.37(14), 2784–2786 (2012). [CrossRef] [PubMed]
  7. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt.41(4), 805–812 (2002). [CrossRef] [PubMed]
  8. E. Dalimier, A. Bruhat, K. Grieve, F. Harms, F. Martins, and A. C. Boccara, “High resolution in-vivo imaging of skin with full field optical coherence tomography,” Proc. SPIE8926, 8926P (2014).
  9. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt.43(14), 2874–2883 (2004). [CrossRef] [PubMed]
  10. G. Moneron, A. C. Boccara, and A. Dubois, “Stroboscopic ultrahigh-resolution full-field optical coherence tomography,” Opt. Lett.30(11), 1351–1353 (2005). [CrossRef] [PubMed]
  11. G. E. Costin and V. J. Hearing, “Human skin pigmentation: melanocytes modulate skin color in response to stress,” FASEB J.21(4), 976–994 (2007). [CrossRef] [PubMed]
  12. S. Kippenberger, A. Brend, J. Bereiter-Hahn, A. R. Bosca, and R. Kaufmann, “The mechanism of melanocyte dendrite formation: the impact of differentiating keratinocyte,” Pigment Cell Res.11, 34–37 (1998).
  13. M. Egawa, T. Hirao, and M. Takahashi, “In vivo estimation of stratum corneum thickness from water concentration profiles obtained with raman spectroscopy,” Acta Derm. Venereol.87(1), 4–8 (2007). [CrossRef] [PubMed]
  14. A. V. Rawlings and C. R. Harding, “Moisturization and skin barrier function,” Dermatol. Ther.17(s1Suppl 1), 43–48 (2004). [CrossRef] [PubMed]
  15. A. J. Byrne, “Bioengineering and subjective approaches to the clinical evaluation of dry skin,” Int. J. Cosmet. Sci.32(6), 410–421 (2010). [CrossRef] [PubMed]
  16. A. Böhling, S. Bielfeldt, A. Himmelmann, M. Keskin, and K. P. Wilhelm, “Comparison of the stratum corneum thickness measured in vivo with confocal Raman spectroscopy and confocal reflectance microscopy,” Skin Res. Technol.20(1), 50–57 (2014). [CrossRef] [PubMed]
  17. K. König, “Hybrid multiphoton multimodal tomography of in vivo human skin,” Intravital1(1), 11–26 (2012). [CrossRef]
  18. Y. H. Liao, S. Y. Chen, S. Y. Chou, P. H. Wang, M. R. Tsai, and C. K. Sun, “Determination of chronological aging parameters in epidermal keratinocytes by in vivo harmonic generation microscopy,” Biomed. Opt. Express4(1), 77–88 (2013). [CrossRef] [PubMed]
  19. Z. Ya-Xian, T. Suetake, and H. Tagami, “Number of cell layers of the stratum corneum in normal skin - relationship to the anatomical location on the body, age, sex and physical parameters,” Arch. Dermatol. Res.291(10), 555–559 (1999). [CrossRef] [PubMed]
  20. C. C. Tsai, T. H. Chen, Y. S. Lin, Y. T. Wang, W. Chang, K. Y. Hsu, Y. H. Chang, P. K. Hsu, D. Y. Jheng, K. Y. Huang, E. Sun, and S. L. Huang, “Ce3+:YAG double-clad crystal-fiber-based optical coherence tomography on fish cornea,” Opt. Lett.35(6), 811–813 (2010). [CrossRef] [PubMed]
  21. C. C. Tsai, Y. S. Lin, S. C. Pei, C. K. Chang, T. H. Chen, N. C. Cheng, M. K. Tsai, C. C. Lai, W. Y. Li, C. K. Wei, and S. L. Huang, “Microstructural and microspectral characterization of a vertically aligned liquid crystal display panel,” Opt. Lett.36(4), 567–569 (2011). [CrossRef] [PubMed]
  22. C. Y. Lo, K. Y. Huang, J. C. Chen, S. Y. Tu, and S. L. Huang, “Glass-clad Cr4+:YAG crystal fiber for the generation of superwideband amplified spontaneous emission,” Opt. Lett.29(5), 439–441 (2004). [CrossRef] [PubMed]
  23. K. Y. Hsu, D. Y. Jheng, Y. H. Liao, T. S. Ho, C. C. Lai, and S. L. Huang, “Diode-laser-pumped glass-clad Ti:Sapphire crystal-fiber-based broadband light source,” IEEE Photon. Technol. Lett.24, 854–856 (2012).
  24. L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett.27(7), 530–532 (2002). [CrossRef] [PubMed]
  25. S. Rehn, A. Planat-Chrétien, M. Berger, J. Dinten, C. Deumié, and A. da Silva, “Comparison of polarized light penetration depth in scattering media,” Proc. SPIE8088, 80881I (2011). [CrossRef]
  26. C. Y. Dong, B. Yu, P. D. Kaplan, and P. T. C. So, “Performances of high numerical aperture water and oil immersion objective in deep-tissue, multi-photon microscopic imaging of excised human skin,” Microsc. Res. Tech.63(1), 81–86 (2004). [CrossRef] [PubMed]
  27. M. Roy, P. Svahn, L. Cherel, and C. J. R. Sheppard, “Geometric phase-shifting for low-coherence interference microscopy,” Opt. Lasers Eng.37(6), 631–641 (2002). [CrossRef]
  28. M. A. A. Neil, R. Juškaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett.22(24), 1905–1907 (1997). [CrossRef] [PubMed]
  29. E. Auksorius, Y. Bromberg, R. Motiejūnaitė, A. Pieretti, L. Liu, E. Coron, J. Aranda, A. M. Goldstein, B. E. Bouma, A. Kazlauskas, and G. J. Tearney, “Dual-modality fluorescence and full-field optical coherence microscopy for biomedical imaging applications,” Biomed. Opt. Express3(3), 661–666 (2012). [CrossRef] [PubMed]
  30. M. Geerligs, Skin Layer Mechanics (Koninklijke Philips Electronics N.V., 2009).
  31. J. Sandby-Møller, T. Poulsen, and H. C. Wulf, “Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits,” Acta Derm. Venereol.83(6), 410–413 (2003). [CrossRef] [PubMed]
  32. C. C. K. Tsai, C. K. Chang, K. Y. Hsu, T. S. Ho, Y. T. Wang, M. Y. Lin, J. W. Tjiu, and S. L. Huang, “In vivo 3-D cellular level imaging using Mirau-based full-field optical coherence tomography on skin tissue,” in Biomedical Optics, OSA Technical Digest (Optical Society of America, 2014), BW4A.2.
  33. T. Gambichler, K. Valavanis, I. Plura, D. Georgas, P. Kampilafkos, and M. Stücker, “In vivo determination of epidermal thickness using high-definition optical coherence tomography,” Br. J. Dermatol.170(3), 737–739 (2014). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: AVI (3073 KB)     
» Media 2: AVI (4011 KB)     
» Media 3: AVI (1697 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited