OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 9 — Sep. 1, 2014
  • pp: 3123–3139

Ambiguity of mapping the relative phase of blood pulsations

Victor Teplov, Ervin Nippolainen, Alexander A. Makarenko, Rashid Giniatullin, and Alexei A. Kamshilin  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 9, pp. 3123-3139 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (5767 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Blood pulsation imaging (BPI) is a non-invasive optical method based on photoplethysmography (PPG). It is used for the visualization of changes in the spatial distribution of blood in the microvascular bed. BPI specifically allows measurements of the relative phase of blood pulsations and using it we detected a novel type of PPG fast waveforms, which were observable in limited areas with asynchronous regional blood supply. In all subjects studied, these fast waveforms coexisted with traditional slow waveforms of PPG. We are therefore presenting a novel lock-in image processing technique of blood pulsation imaging, which can be used for detailed temporal characterization of peripheral microcirculation.

© 2014 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(280.1415) Remote sensing and sensors : Biological sensing and sensors

ToC Category:
Cardiovascular Applications

Original Manuscript: July 14, 2014
Revised Manuscript: August 13, 2014
Manuscript Accepted: August 20, 2014
Published: August 22, 2014

Victor Teplov, Ervin Nippolainen, Alexander A. Makarenko, Rashid Giniatullin, and Alexei A. Kamshilin, "Ambiguity of mapping the relative phase of blood pulsations," Biomed. Opt. Express 5, 3123-3139 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. B. Hertzman and C. R. Spealman, “Observations on the finger volume pulse recorded photoelectrically,” Am. J. Physiol.119, 334–335 (1937).
  2. J. Allen, “Photoplethysmography and its application in clinical physiological measurement,” Physiol. Meas.28(3), R1–R39 (2007). [CrossRef] [PubMed]
  3. A. A. R. Kamal, J. B. Harness, G. Irving, and A. J. Mearns, “Skin photoplethysmography - a review,” Comput. Methods Programs Biomed.28(4), 257–269 (1989). [CrossRef] [PubMed]
  4. K. Nakajima, T. Tamura, and H. Miike, “Monitoring of heart and respiratory rates by photoplethysmography using a digital filtering technique,” Med. Eng. Phys.18(5), 365–372 (1996). [CrossRef] [PubMed]
  5. L.-G. Lindberg, H. Ugnell, and P. Å. Öberg, “Monitoring of respiratory and heart rates using a fibre-optic sensor,” Med. Biol. Eng. Comput.30(5), 533–537 (1992). [CrossRef] [PubMed]
  6. K. H. Shelley, “Photoplethysmography: beyond the calculation of arterial oxygen saturation and heart rate,” Anesth. Analg.105(6), S31–S36 (2007). [CrossRef] [PubMed]
  7. N. Selvaraj, A. K. Jaryal, J. Santhosh, K. K. Deepak, and S. S. Anand, “Assessment of heart rate variability derived from finger-tip photoplethysmography as compared to electrocardiography,” J. Med. Eng. Technol.32(6), 479–484 (2008). [CrossRef] [PubMed]
  8. F. P. Wieringa, F. Mastik, and A. F. W. van der Steen, “Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO2 camera” technology,” Ann. Biomed. Eng.33(8), 1034–1041 (2005). [CrossRef] [PubMed]
  9. K. Humphreys, T. Ward, and C. Markham, “Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry,” Rev. Sci. Instrum.78(4), 044304 (2007). [CrossRef] [PubMed]
  10. W. Verkruysse, L. O. Svaasand, and J. S. Nelson, “Remote plethysmographic imaging using ambient light,” Opt. Express16(26), 21434–21445 (2008). [CrossRef] [PubMed]
  11. A. A. Kamshilin, S. V. Miridonov, V. Teplov, R. Saarenheimo, and E. Nippolainen, “Photoplethysmographic imaging of high spatial resolution,” Biomed. Opt. Express2(4), 996–1006 (2011). [CrossRef] [PubMed]
  12. A. A. Kamshilin, V. Teplov, E. Nippolainen, S. V. Miridonov, and R. Giniatullin, “Variability of microcirculation detected by blood pulsation imaging,” PLoS ONE8(2), e57117 (2013). [CrossRef] [PubMed]
  13. N. Zaproudina, V. Teplov, E. Nippolainen, J. A. Lipponen, A. A. Kamshilin, M. Närhi, P. A. Karjalainen, and R. Giniatullin, “Asynchronicity of facial blood perfusion in migraine,” PLoS ONE8(12), e80189 (2013). [CrossRef] [PubMed]
  14. V. Teplov, A. Shatillo, E. Nippolainen, O. Gröhn, R. Giniatullin, and A. A. Kamshilin, “Fast vascular component of cortical spreading depression revealed in rats by blood pulsation imaging,” J. Biomed. Opt.19(4), 046011 (2014). [CrossRef] [PubMed]
  15. W. J. Cui, L. E. Ostrander, and B. Y. Lee, “In vivo reflectance of blood and tissue as a function of light wavelength,” IEEE Trans. Biomed. Eng.37(6), 632–639 (1990). [CrossRef] [PubMed]
  16. G. G. Berntson, J. T. Bigger, D. L. Eckberg, P. Grossman, P. G. Kaufmann, M. Malik, H. N. Nagaraja, S. W. Porges, J. P. Saul, P. H. Stone, and M. W. van der Molen, “Heart rate variability: Origins, methods, and interpretive caveats,” Psychophysiology34(6), 623–648 (1997). [CrossRef] [PubMed]
  17. B. Khanokh, Y. Slovik, D. Landau, and M. Nitzan, “Sympathetically induced spontaneous fluctuations of the photoplethysmographic signal,” Med. Biol. Eng. Comput.42(1), 80–85 (2004). [CrossRef] [PubMed]
  18. E. Jonathan and M. Leahy, “Investigating a smartphone imaging unit for photoplethysmography,” Physiol. Meas.31(11), N79–N83 (2010). [CrossRef] [PubMed]
  19. C. G. Scully, J. Lee, J. Meyer, A. M. Gorbach, D. Granquist-Fraser, Y. Mendelson, and K. H. Chon, “Physiological parameter monitoring from optical recordings with a mobile phone,” IEEE Trans. Biomed. Eng.59(2), 303–306 (2012). [CrossRef] [PubMed]
  20. A. Johansson and P. Å. Öberg, “Estimation of respiratory volumes from the photoplethysmographic signal. Part I: experimental results,” Med. Biol. Eng. Comput.37(1), 42–47 (1999). [CrossRef] [PubMed]
  21. M. Nitzan, A. Babchenko, B. Khanokh, and D. Landau, “The variability of the photoplethysmographic signal - a potential method for the evaluation of the autonomic nervous system,” Physiol. Meas.19(1), 93–102 (1998). [CrossRef] [PubMed]
  22. A. B. Hertzman, “The blood supply of various skin areas as estimated by the photoelectric plethysmograph,” Am. J. Physiol.124, 328–340 (1938).
  23. H. Lax, A. W. Feinberg, and B. M. Cohen, “Studies of the arterial pulse wave. I. The normal pulse wave and its modification in the presence of human arteriosclerosis,” J. Chronic Dis.3(6), 618–631 (1956). [CrossRef] [PubMed]
  24. S. C. Millasseau, J. M. Ritter, K. Takazawa, and P. J. Chowienczyk, “Contour analysis of the photoplethysmographic pulse measured at the finger,” J. Hypertens.24(8), 1449–1456 (2006). [CrossRef] [PubMed]
  25. V. G. Macefield, “Sympathetic microneurography,” in Autonomic Nervous System, R. M. Buijs and D. F. Swaab, eds., (Elsevier B.V., 2013), pp. 353–364.
  26. R. Brown, C. James, L. A. Henderson, and V. G. Macefield, “Autonomic markers of emotional processing: skin sympathetic nerve activity in humans during exposure to emotionally charged images,” Front Physiol3, 394 (2012). [CrossRef] [PubMed]
  27. Y.-I. Kamijo, K. Lee, and G. W. Mack, “Active cutaneous vasodilation in resting humans during mild heat stress,” J. Appl. Physiol.98(3), 829–837 (2004). [CrossRef] [PubMed]
  28. G. A. Tew, J. M. Saxton, and G. J. Hodges, “Exercise training and the control of skin blood flow in older adults,” J. Nutr. Health Aging16(3), 237–241 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited