OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 9 — Sep. 1, 2014
  • pp: 3140–3149

Preparation of a skin equivalent phantom with interior micron-scale vessel structures for optical imaging experiments

Chen Chen, Florian Klämpfl, Christian Knipfer, Max Riemann, Rajesh Kanawade, Florian Stelzle, and Michael Schmidt  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 9, pp. 3140-3149 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2472 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A popular alternative of preparing multilayer or microfluidic chip based phantoms could have helped to simulate the subsurface vascular network, but brought inevitable problems. In this work, we describe the preparation method of a single layer skin equivalent tissue phantom containing interior vessel channels, which mimick the superficial microvascular structure. The fabrication method does not disturb the optical properties of the turbiding matrix material. The diameter of the channels reaches a value of 50 μm. The size, as well as the geometry of the generated vessel structures are investigated by using the SD-OCT system. Our preliminary results confirm that fabrication of such a phantom is achievable and reproducible. Prospectively, this phantom is used to calibrate the optical angiographic imaging approaches.

© 2014 Optical Society of America

OCIS Codes
(110.7050) Imaging systems : Turbid media
(160.4760) Materials : Optical properties
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(350.0350) Other areas of optics : Other areas of optics

ToC Category:
Calibration, Validation and Phantom Studies

Original Manuscript: June 25, 2014
Revised Manuscript: August 10, 2014
Manuscript Accepted: August 15, 2014
Published: August 22, 2014

Chen Chen, Florian Klämpfl, Christian Knipfer, Max Riemann, Rajesh Kanawade, Florian Stelzle, and Michael Schmidt, "Preparation of a skin equivalent phantom with interior micron-scale vessel structures for optical imaging experiments," Biomed. Opt. Express 5, 3140-3149 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Firbank and D. T. Delpy, “A design for a stable and reproducible phantom for use in near infra-red imaging and spectroscopy,” Phys. Med. Biol.38(6), 847 (1993) [CrossRef]
  2. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006) [CrossRef] [PubMed]
  3. M. Lualdi, A. Colombo, B. Farina, S. Tomatis, and R. Marchesini, “A phantom with tissue-like optical properties in the visible and near infrared for use in photomedicine,” Laser. Surg. Med.39(3), 237–243 (2001) [CrossRef]
  4. D. D. Roystonand, R. S. Poston, and S. A. Prahl, “Optical properties of scattering and absorbing materials used in the development of optical phantoms at 1064 nm,” J. Biomed. Opt.1(1), 110–116 (1996) [CrossRef]
  5. G. Lamouche, B. F. Kennedy, K. M. Kennedy, C. E. Bisaillon, A. Curatolo, G. Campbell, V. Pazos, and D. D. Sampson, “Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography,” Biomed. Opt. Express3(6), 1381–1398 (2012) [CrossRef] [PubMed]
  6. R. J. Cooper, R. Eames, J. Brunker, L. C. Enfield, A. P. Gibson, and J. C. Hebden, “A tissue equivalent phantom for simultaneous near-infrared optical tomography and EEG,” Biomed. Opt. Express1(2), 425–430 (2010) [CrossRef]
  7. A. V. Mudaliar, Development of a Phantom Tissue for Blood Perfusion Measurement and Noninvasive Blood Perfusion Estimation in Living Tissue (Virginia Polytechnic Institute and State University, 2007)
  8. C. L. De Korte, E. I. Cespedes, A. F. W. Van der Steen, B. Norder, and K. te Nijenhuis, “Elastic and acoustic properties of vessel mimicking material for elasticity imaging,” Ultrasonic imaging19(2), 112–126 (1997) [CrossRef] [PubMed]
  9. W. Dabrowski, J. Dunmore-Buyze, R. N. Rankin, D. W. Holdsworth, and A. Fenster, “A real vessel phantom for imaging experimentation,” Med. Phys.24, 687 (1997) [CrossRef] [PubMed]
  10. A. Surowiec, P. N. Shrivastava, M. Astrahan, and Z. Petrovich, “Utilization of a multilayer polyacrylamide phantom for evaluation of hyperthermia applicators,” Int. J. Hyperther.8(6), 795–807 (1992) [CrossRef]
  11. R. B. Saager, C. Kondru, A. U. Kendrew, K. Sry, F. Ayers, and A. J. Durkin, “Multilayer silicone phantoms for the evaluation of quantitative optical techniques in skin imaging,” Proc. SPIE7567, 756706 (2010) [CrossRef]
  12. A. V. Bykovand, A. P. Popov, A. V. Priezzhev, and R. Myllylä, “Multilayer tissue phantoms with embedded capillary system for OCT and DOCT imaging,” Proc. SPIE8091, 80911R (2012)
  13. A. V. Bykov, A. P. Popov, M. Kinnunen, T. Prykäri, A. V. Priezzhev, and R. Myllylä, “Skin phantoms with realistic vessel structure for OCT measurements,” Proc. SPIE7376, 73760F (2010) [CrossRef]
  14. V. V. Tuchin, A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Lychagov, S. A. Portnov, N. A. Trunina, D. R. Miller, S. Cho, B. Shim, M. Kim, J. Oh, H. Eum, Y. Ku, D. Kim, and Y. Yang, “Finger tissue model and blood perfused skin tissue phantom,” Proc. SPIE7898, 78980Z (2011) [CrossRef]
  15. J. T. Wang, J. C. James, C. P. Liang, N. Woolsey, J. C. Ramella-Roman, Y. Chen, and T. J. Pfefer, “Three-dimensional printing of tissue phantoms for biophotonic imaging,” Opt. Lett.39(10), 3010–3013 (2014) [CrossRef] [PubMed]
  16. L. Luu, P. A. Roman, S. A. Mathews, and J. C. Ramella-Roman, “Microfluidics based phantoms of superficial vascular network,” Biomed. Opt. Express3(6), 1350–1364 (2012) [CrossRef] [PubMed]
  17. N. T. Nguyen and S. T. Wereley, Fundamentals and Applications of Microfluidics (Artech House, 2002)
  18. A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” Journal of Innovative Optical Health Sciences, 4(1), 9–38 (2011) [CrossRef]
  19. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19, 879 (1992) [CrossRef] [PubMed]
  20. S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol.37(4), 985 (1992) [CrossRef] [PubMed]
  21. S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid mediaby using the adding–doubling method,” Appl. Opt.32(4), 559–568 (1993) [PubMed]
  22. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE pressBellingham, 2012)
  23. A. E. Cerussi, R. Warren, B. Hill, D. Roblyer, A. Leproux, A. F. Durkin, T. D. O ’ Sullivan, S. Keene, H. Haghany, T. Quang, W. M. Mantulin, and B. J. Tromberg, “Tissue phantoms in multicenter clinical trials for diffuse optical technologies,” Biomed. Opt. Express3(5), 966–971 (2012) [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited