OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 9 — Sep. 1, 2014
  • pp: 3217–3230

Optical coherence Doppler tomography for quantitative cerebral blood flow imaging

Jiang You, Congwu Du, Nora D. Volkow, and Yingtian Pan  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 9, pp. 3217-3230 (2014)
http://dx.doi.org/10.1364/BOE.5.003217


View Full Text Article

Enhanced HTML    Acrobat PDF (7387 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical coherence Doppler tomography (ODT) is a promising neurotechnique that permits 3D imaging of the cerebral blood flow (CBF) network; however, quantitative CBF velocity (CBFv) imaging remains challenging. Here we present a simple phase summation method to enhance slow capillary flow detection sensitivity without sacrificing dynamic range for fast flow and vessel tracking to improve angle correction for absolute CBFv quantification. Flow phantom validation indicated that the CBFv quantification accuracy increased from 15% to 91% and the coefficient of variation (CV) decreased 9.3-fold; in vivo mouse brain validation showed that CV decreased 4.4-/10.8- fold for venular/arteriolar flows. ODT was able to identify cocaine-elicited microischemia and quantify CBFv disruption in branch vessels and capillaries that otherwise would have not been possible.

© 2014 Optical Society of America

OCIS Codes
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(280.2490) Remote sensing and sensors : Flow diagnostics

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: June 24, 2014
Revised Manuscript: July 28, 2014
Manuscript Accepted: August 4, 2014
Published: August 28, 2014

Virtual Issues
Topics in Biomedical Optics from OSA's BIOMED 2014 Conference (2014) Biomedical Optics Express

Citation
Jiang You, Congwu Du, Nora D. Volkow, and Yingtian Pan, "Optical coherence Doppler tomography for quantitative cerebral blood flow imaging," Biomed. Opt. Express 5, 3217-3230 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-9-3217


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Villringer, A. Them, U. Lindauer, K. Einhäupl, and U. Dirnagl, “Capillary perfusion of the rat brain cortex. An in vivo confocal microscopy study,” Circ. Res.75(1), 55–62 (1994). [CrossRef] [PubMed]
  2. O. B. Paulson, S. G. Hasselbalch, E. Rostrup, G. M. Knudsen, and D. Pelligrino, “Cerebral blood flow response to functional activation,” J. Cereb. Blood Flow Metab.30(1), 2–14 (2010).
  3. C. Iadecola, “Neurovascular regulation in the normal brain and in Alzheimer’s disease,” Nat. Rev. Neurosci.5(5), 347–360 (2004). [CrossRef] [PubMed]
  4. R. G. Shulman, D. L. Rothman, K. L. Behar, and F. Hyder, “Energetic basis of brain activity: implications for neuroimaging,” Trends Neurosci.27(8), 489–495 (2004). [CrossRef] [PubMed]
  5. A. Y. Shih, J. D. Driscoll, P. J. Drew, N. Nishimura, C. B. Schaffer, and D. Kleinfeld, “Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain,” J. Cereb. Blood Flow Metab.32(7), 1277–1309 (2012).
  6. S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, “Brain magnetic resonance imaging with contrast dependent on blood oxygenation,” Proc. Natl. Acad. Sci. U.S.A.87(24), 9868–9872 (1990). [CrossRef] [PubMed]
  7. A. Devor, S. Sakadzic, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cereb. Blood Flow Metab.32(7), 1259–1276 (2012).
  8. V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with Optical Coherence Tomography,” Opt. Express18(3), 2477–2494 (2010). [CrossRef] [PubMed]
  9. J. Lee, W. Wu, F. Lesage, and D. A. Boas, “Multiple-capillary measurement of RBC speed, flux, and density with optical coherence tomography,” J. Cereb. Blood Flow Metab.33(11), 1707–1710 (2013).
  10. V. J. Srinivasan, D. N. Atochin, H. Radhakrishnan, J. Y. Jiang, S. Ruvinskaya, W. Wu, S. Barry, A. E. Cable, C. Ayata, P. L. Huang, and D. A. Boas, “Optical coherence tomography for the quantitative study of cerebrovascular physiology,” J. Cereb. Blood Flow Metab.31(6), 1339–1345 (2011).
  11. H. Radhakrishnan and V. J. Srinivasan, “Compartment-resolved imaging of cortical functional hyperemia with OCT angiography,” Biomed. Opt. Express4(8), 1255–1268 (2013). [CrossRef] [PubMed]
  12. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett.25(2), 114–116 (2000). [CrossRef] [PubMed]
  13. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express15(7), 4083–4097 (2007). [CrossRef] [PubMed]
  14. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett.33(13), 1530–1532 (2008). [CrossRef] [PubMed]
  15. A. Mariampillai, M. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett.35(8), 1257–1259 (2010). [CrossRef] [PubMed]
  16. H. Ren, C. Du, and Y. Pan, “Cerebral blood flow imaged with ultrahigh-resolution optical coherence angiography and Doppler tomography,” Opt. Lett.37(8), 1388–1390 (2012). [CrossRef] [PubMed]
  17. R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, “Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography,” Opt. Lett.29(2), 171–173 (2004). [CrossRef] [PubMed]
  18. B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express13(14), 5483–5493 (2005). [CrossRef] [PubMed]
  19. H. C. Hendargo, R. P. McNabb, A.-H. Dhalla, N. Shepherd, and J. A. Izatt, “Doppler velocity detection limitations in spectrometer-based versus swept-source optical coherence tomography,” Biomed. Opt. Express2(8), 2175–2188 (2011). [CrossRef] [PubMed]
  20. E. Koch, J. Walther, and M. Cuevas, “Limits of Fourier domain Doppler-OCT at high velocities,” Sens. Actuators A Phys.156(1), 8–13 (2009). [CrossRef]
  21. Z. Yuan, Z. C. Luo, H. G. Ren, C. W. Du, and Y. Pan, “A digital frequency ramping method for enhancing Doppler flow imaging in Fourier-domain optical coherence tomography,” Opt. Express17(5), 3951–3963 (2009). [CrossRef] [PubMed]
  22. K. Itoh, “Analysis of the phase unwrapping algorithm,” Appl. Opt.21(14), 2470 (1982). [CrossRef] [PubMed]
  23. A. Bouwens, D. Szlag, M. Szkulmowski, T. Bolmont, M. Wojtkowski, and T. Lasser, “Quantitative lateral and axial flow imaging with optical coherence microscopy and tomography,” Opt. Express21(15), 17711–17729 (2013). [CrossRef] [PubMed]
  24. D. Piao, L. L. Otis, and Q. Zhu, “Doppler angle and flow velocity mapping by combined Doppler shift and Doppler bandwidth measurements in optical Dopplertomography,” Opt. Lett.28(13), 1120–1122 (2003). [CrossRef] [PubMed]
  25. H. Ren, K. M. Brecke, Z. Ding, Y. Zhao, J. S. Nelson, and Z. Chen, “Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography,” Opt. Lett.27(6), 409–411 (2002). [CrossRef] [PubMed]
  26. S. G. Proskurin, Y. He, and R. K. Wang, “Determination of flow velocity vector based on Doppler shift and spectrum broadening with optical coherence tomography,” Opt. Lett.28(14), 1227–1229 (2003). [CrossRef] [PubMed]
  27. L. M. Peterson, S. Gu, M. W. Jenkins, and A. M. Rollins, “Orientation-independent rapid pulsatile flow measurement using dual-angle Doppler OCT,” Biomed. Opt. Express5(2), 499–514 (2014). [CrossRef] [PubMed]
  28. W. Trasischker, R. M. Werkmeister, S. Zotter, B. Baumann, T. Torzicky, M. Pircher, and C. K. Hitzenberger, “In vitro and in vivo three-dimensional velocity vector measurement by three-beam spectral-domain Doppler optical coherence tomography,” J. Biomed. Opt.18(11), 116010 (2013). [CrossRef] [PubMed]
  29. W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt.9(1), 47–74 (2004). [CrossRef] [PubMed]
  30. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett.24(17), 1221–1223 (1999). [CrossRef] [PubMed]
  31. H.-G. Ren, C.-W. Du, Z.-J. Yuan, K. Park, N. D. Volkow, and Y.-T. Pan, “Cocaine-induced cortical microischemia in the rodent brain: clinical implications,” Mol. Psychiatry17(10), 1017–1025 (2012). [CrossRef] [PubMed]
  32. Y. T. Pan, Z. L. Wu, Z. J. Yuan, Z. G. Wang, and C. W. Du, “Subcellular imaging of epithelium with time-lapse optical coherence tomography,” J. Biomed. Opt.12(5), 050504 (2007). [CrossRef] [PubMed]
  33. T. Wu, Z. Ding, L. Wang, and M. Chen, “Spectral phase based k-domain interpolation for uniform sampling in swept-source optical coherence tomography,” Opt. Express19(19), 18430–18439 (2011). [CrossRef] [PubMed]
  34. V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. Alex Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun.208(4–6), 209–214 (2002). [CrossRef]
  35. V. Yang, M. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. Wilson, and I. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance,” Opt. Express11(7), 794–809 (2003). [CrossRef] [PubMed]
  36. G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, 2000).
  37. C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-Photon Imaging of Cortical Surface Microvessels Reveals a Robust Redistribution in Blood Flow after Vascular Occlusion,” PLoS Biol.4(2), e22 (2006). [CrossRef] [PubMed]
  38. T. N. Kim, P. W. Goodwill, Y. Chen, S. M. Conolly, C. B. Schaffer, D. Liepmann, and R. A. Wang, “Line-Scanning Particle Image Velocimetry: An Optical Approach for Quantifying a Wide Range of Blood Flow Speeds in Live Animals,” PLoS ONE7(6), e38590 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited