OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Editor: Zhizhan Xu
  • Vol. 10, Iss. 10 — Oct. 1, 2012
  • pp: 101902–101902

Modeling and identification on nonlinear saturable and reverse-saturable absorptions of gold nanorods using femtosecond Z-scan technique

Rui Wang, Yingshuai Wang, Dan'ao Han, Chuantao Zheng, Jiyan Leng, and Han Yang  »View Author Affiliations

Chinese Optics Letters, Vol. 10, Issue 10, pp. 101902-101902 (2012)

View Full Text Article

Acrobat PDF (411 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


An improved Z-scan analysis approach is proposed by establishing and solving the saturable absorption (SA) and reverse-SA (RSA) models, respectively. Near-infrared femtosecond Z-scans are carried out on the synthesized gold nanorods (NRs) possessing the average length of 46 nm using a femtosecond laser operated at the wavelength of 800 nm, which is close to the peak position of longitudinal surface plasmon resonance (SPR) (710 nm) of gold NRs. At lower input intensity of less than 400 GW/cm2, the normalized transmission exhibits only SA phenomenon; however, when it exceeds 400 GW/cm2, both SA and RSA are observed. By using the presented Z-scan modeling and theory, the three-photon absorption (3PA) is identified in the material, and the 3PA cross-section is determined to be 1.58×0-71 cm6s2.

© 2012 Chinese Optics Letters

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4400) Nonlinear optics : Nonlinear optics, materials

ToC Category:
Nonlinear Optics

Rui Wang, Yingshuai Wang, Dan'ao Han, Chuantao Zheng, Jiyan Leng, and Han Yang, "Modeling and identification on nonlinear saturable and reverse-saturable absorptions of gold nanorods using femtosecond Z-scan technique," Chin. Opt. Lett. 10, 101902-101902 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. K. D. Belfield, D. J. Hagan, E. W. V. Stryland, K. J. Schafer, and R. A. Negres, Org. Lett. 1, 1575 (1999).
  2. H.-H. Fang, Q.-D. Chen, J. Yang, H. Xia, Y.-G. Ma, H.-Y. Wang, and H.-B. Sun, Opt. Lett. 35, 441 (2010).
  3. W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
  4. Y. X. Fan, J. L. He, Y. G. Wang, S. Liu, H. T. Wang, and X. Y. Ma, Appl. Phys. Lett. 86, 101103 (2005).
  5. I. L. Medintz, H. T. Uyeda, and E. R. Goldman, Nat. Mat. 4, 435 (2005).
  6. P. Kumbhakar, M. Chattopadhyay, R. Sarkar, and U. Chatterjee, Chin. Opt. Lett. 9, 101902 (2011).
  7. F. Liu, Y. Li, Q. Xing, C. Wang, M. Hu, L. Chai, and C. Wang, Chin. Opt. Lett. 9, 10201 (2011).
  8. D. Wu, Y. B. Zhao, S. Z. Wu, Y. F. Liu, H. Zhang, S. Zhao, J. Feng, Q. D. Chen, D. G. Ma, and H. B. Sun, Opt. Lett. 36, 2635 (2011).
  9. B. B. Xu, Z. C. Ma, L. Wang, R. Zhang, L. G. Niu, Z. Yang, Y. L. Zhang, W. H. Zheng, B. Zhao, Y. Xu, Q. D. Chen, H. Xia, and H. B. Sun, Lab. Chip. 11, 3347 (2012).
  10. Y. L. Sun, W. F. Dong, R. Z. Yang, X. Meng, L. Zhang, Q. D. Chen, and H. B. Sun, Angew. Chem. Int. Ed. 51, 1558 (2012).
  11. G. S. He, R. Signorini, and P. N. Prasad, Appl. Opt. 37, 5720 (1998).
  12. Q. D. Chen, H. H. Fang, B. Xu, J. Yang, H. Xia, F. P. Chen, W. J. Tian, and H. B. Sun, Appl. Phys. Lett. 94, 201113 (2009).
  13. H. H. Fang, B. Xu, Q. D. Chen, R. Ding, F. P. Chen, J. Yang, R. Wang, and H. B. Sun, IEEE J. Quantum Electron. 46, 1775 (2010).
  14. J. E. Ehrlich, X. L. Wu, I.-Y. S. Lee, Z.-Y. Hu, H. Rockel, S. R. Marder, and J. W. Perry, Opt. Lett. 33, 1843 (1997).
  15. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
  16. Y. C. Gao, X. R. Zhang, Y. L. Li, H. F. Liu, Y. X. Wang, Q. Chang, W. Y. Jiao, and Y. L. Song, Opt. Commun. 251, 429 (2005).
  17. S. V. Rao, N. K. M. N. Srinivas, and D. N. Rao, Chem. Phys. Lett. 361, 439 (2002).
  18. C. Zheng, X. Y. Ye, S. G. Cai, M. J. Wang, and X. Q. Xiao, Appl. Phys. B 101, 835 (2010).
  19. Y. H. Lee, Y. L. Yan, L. Polavarapu, and Q. H. Xu, Appl. Phys. Lett. 95, 023105 (2009).
  20. B. Gu, Y. X. Fan, J. Wang, J. Chen, J. P. Ding, H. T. Wang, and B. Guo, Phys. Rev. A 73, 065803 (2006).
  21. B. Gu, X. Q. Huang, S. Q. Tan, M. Wang, and W. Ji, Appl. Phys. B 95, 375 (2009).
  22. B. B. Xu, Z. C. Ma, H. Wang, X. Q. Liu, Y. L. Zhang, X. L. Zhang, R. Zhang, H. B. Jiang, and H. B. Sun, Electrophoresis 32, 3378 (2011).
  23. Y. W. Hao, H. Y. Wang, Y. Jiang, Q. D. Chen, K. Ueno, W. Q. Wang, H. Misawa, and H. B. Sun, Angew. Chem. Int. Ed. 50, 7824 (2011).
  24. Y. Jiang, H. Y. Wang, H. Wang, B. R. Gao, Y. W. Hao, Y. Jin, Q. D. Chen, and H. B. Sun, J. Phys. Chem. C 115, 12636 (2011).
  25. H. I. Elim, J. Yang, and J. Y. Lee, Appl. Phys. Lett. 88, 083107 (2006).
  26. A. M. Wazwaz, Appl. Math. Comput. 102, 77 (1999).
  27. N. R. Jana, L. Gearheart, and C. J. Murphy, Adv. Mater. 13, 1389 (2001).
  28. R. Wang, L. Y. Pan, X. D. Xia, D. A. Han, J. Q, and H. Yang, Chemical Journal of Chinese Universities 33, 149 (2012).
  29. J. H. Liu, Y. L. Mao, M. J. Huang, Y. Z. Gu, and W. F. Zhang, J. Phys. Chem. A 111, 9013 (2007).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited