OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters

| PUBLISHED MONTHLY BY CHINESE LASER PRESS AND DISTRIBUTED BY OSA

  • Editor: Zhizhan Xu
  • Vol. 10, Iss. 12 — Dec. 1, 2012
  • pp: 122501–122501

Improvement of InGaAs/GaAs vertical-cavity surface-emitting lasers by post-oxidation annealing

Changling Yan, Yun Deng, Peng Li, Xiaomao Song, and Jianwei Shi  »View Author Affiliations


Chinese Optics Letters, Vol. 10, Issue 12, pp. 122501-122501 (2012)


View Full Text Article

Acrobat PDF (267 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

InGaAs/GaAs vertical-cavity surface-emitting lasers (VCSELs) are fabricated by a thermal selective wet-oxidation confinement technique. Post-oxidation annealing in a nitrogen environment at high temperatures is then conducted to improve the performance of the oxide-confined InGaAs/GaAs VCSELs. The optimum post-oxidation annealing conditions are determined by changing the furnace temperature and annealing time. Compared with a unannealed laser device, the light output power increases by about 12%. An aging test is carried out to examine the reliability of the annealed oxide-confined VCSEL device. The temperature dependence of the lasing wavelength of the annealed oxide-confined VCSELs is also investigated.

© 2012 Chinese Optics Letters

OCIS Codes
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers
(250.5960) Optoelectronics : Semiconductor lasers
(140.7260) Lasers and laser optics : Vertical cavity surface emitting lasers

ToC Category:
Optoelectronics

Citation
Changling Yan, Yun Deng, Peng Li, Xiaomao Song, and Jianwei Shi, "Improvement of InGaAs/GaAs vertical-cavity surface-emitting lasers by post-oxidation annealing," Chin. Opt. Lett. 10, 122501-122501 (2012)
http://www.opticsinfobase.org/col/abstract.cfm?URI=col-10-12-122501


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. S. Geels, S. W. Corzine, and L. A. Coldren, IEEE J. Quantum Electron. 27, 1359 (1991).
  2. W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Haldey, IEEE J. Quantum Electron. 33, 1810 (1997).
  3. R. Jager, M. Grabherr, C. Jung, R. Michalzik, G. Reiner, B. Weigl, and K. J. Ebeling, Electron. Lett. 33, 330 (1997).
  4. P. Westbergh, J. S. Gustavsson, B. Kogel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, Electron. Lett. 46, 1014 (2010).
  5. A. Mutig, J. A. Lott, S. A. Blokhin, P. Wolf, P. Moser, W. Hofmann, A. M. Nadtochiy, A. Payusov, and D. Bimberg, Appl. Phys. Lett. 97, 151101 (2010).
  6. H. Q. Jia, H. Chen, W. C. Wang, W. X. Wang, W. Li, Q. Huang, and J. Zhou, Appl. Phys. Lett. 80, 974 (2002).
  7. H. Reese, Y. J. Chiu, and E. Hu, Appl. Phys. Lett. 73, 2624 (1998).
  8. M. Osinski, T. Svimonishvili, G. A. Smolyakov, V. A. Smagley, P. Mackowiak, and W. Nakwaski, IEEE Photonics Technol. Lett. 13, 687 (2001).
  9. N. C. Das, B. Gollsneider, P. Newman, and W. Chang, Appl. Phys. Lett. 81, 1600 (2002).
  10. P. D. Floyd and D. W. Treat, Appl. Phys. Lett. 70, 2493 (1997).
  11. N. C. Das and P. Newman, Solid-State Electron. 47, 1359 (2003).
  12. R. Todt, K. Dovidenko, A. Katsnelson, V. Tokranov, M. Yakimov, and S. Oktyabrsky, Mat. Res. Soc. Symp.
  13. Proc. 692, 561 (2001).
  14. Y. Sun, Y. Ning, T. Li, L. Qin, C. Yan, and L. Wang, J. Lumin. 122, 886 (2007).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited