Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 10,
  • Issue 2,
  • pp. 020602-
  • (2012)

Temperature independent 80 Gb/s transmission system using spectral phase modulation-based TDC

Not Accessible

Your library or personal account may give you access

Abstract

A temperature independent 80-Gb/s 100-km transmission system is demonstrated with the use of spectral phase modulation-based tunable dispersion compensator (TDC). The principle of dispersion compensation based on spectral phase modulation as well as the relationship between spectral phase modulation function and group velocity dispersion (GVD) are theoretically studied. TDC based on spectral phase modulation is implemented. The performance of 80-Gb/s transmission system is experimentally evaluated. The non-linear relationship between temperature and temperature-induced dispersion fluctuations is demonstrated through the asymmetric temperature-induced power penalty without dispersion compensation. With respect to the low temperature area, the temperature-induced dispersion fluctuations are smaller than those in the high temperature area. By using the proposed TDC, temperature independent 80-Gb/s transmission is successfully demonstrated under a temperature range of -20 - 60 °C with a power penalty of less than 0.8 dB.

© 2012 Chinese Optics Letters

PDF Article
More Like This
10 Gb/s long-reach PON system based on directly modulated transmitters and simple polarization independent coherent receiver

M. Rannello, M. Artiglia, M. Presi, and E. Ciaramella
Opt. Express 25(15) 17841-17846 (2017)

Thermally tunable dispersion compensator in 40-Gb/s system using FBG fabricated with linearly chirped phase mask

Jie Sun, Yitang Dai, Xiangfei Chen, Yejin Zhang, and Shizhong Xie
Opt. Express 14(1) 44-49 (2006)

11-Gb/s 80-km transmission performance of zero-chirp silicon Mach–Zehnder modulator

Kazuhiro Goi, Kenji Oda, Hiroyuki Kusaka, Yoshihiro Terada, Kensuke Ogawa, Tsung-Yang Liow, Xiaoguang Tu, Guo-Qiang Lo, and Dim-Lee Kwong
Opt. Express 20(26) B350-B356 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.