OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters

| PUBLISHED MONTHLY BY CHINESE LASER PRESS AND DISTRIBUTED BY OSA

  • Vol. 11, Iss. 1 — Jan. 1, 2013
  • pp: 013501–

100-GeV large scale laser plasma electron acceleration by a multi-PW laser

Kazuhisa Nakajima, Haiyang Lu, Xueyan Zhao, Baifei Shen, Ruxin Li, and Zhizhan Xu  »View Author Affiliations


Chinese Optics Letters, Vol. 11, Issue 1, pp. 013501- (2013)


View Full Text Article

Acrobat PDF (459 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We present three possible design options of laser plasma acceleration (LPA) for reaching a 100-GeV level energy by means of a multi-petawatt laser such as the 3.5-kJ, 500-fs PETawatt Aquitane Laser (PETAL) at French Alternative Energies and Atomic Energy Commission (CEA). Based on scaling of laser wakefield acceleration in the quasi-linear regime with the normalized vector potential a0 = 1.4(1.6), acceleration to 100 (130) GeV requires a 30-m-long plasma waveguide operated at the plasma density ne ≅ 7 × 1015 cm-3 with a channel depth Δn/ne = 20%, while a nonlinear laser wakefield accelerator in the bubble regime with a0 ≥ 2 can reach 100 GeV approximately in a 36/a0-m-long plasma through self-guiding. The third option is a hybrid concept that employs a ponderomotive channel created by a long leading pulse for guiding a short trailing driving laser pulse. The detail parameters for three options are evaluated, optimizing the operating plasma density at which a given energy gain is obtained over the dephasing length and the matched conditions for propagation of relativistic laser pulses in plasma channels, including the self-guiding. For the production of high-quality beams with 1%-level energy spread and a 1π-mm-mrad level transverse normalized emittance at 100-MeV energy, a simple scheme based on the ionization-induced injection mechanism may be conceived. We investigate electron beam dynamics and effects of synchrotron radiation due to betatron motion by solving the beam dynamics equations on energy and beam radius numerically. For the bubble regime case with a0 = 4, radiative energy loss becomes 10% at the maximum energy of 90 GeV.

© 2013 Chinese Optics Letters

OCIS Codes
(350.4990) Other areas of optics : Particles
(350.5400) Other areas of optics : Plasmas

Citation
Kazuhisa Nakajima, Haiyang Lu, Xueyan Zhao, Baifei Shen, Ruxin Li, and Zhizhan Xu, "100-GeV large scale laser plasma electron acceleration by a multi-PW laser," Chin. Opt. Lett. 11, 013501- (2013)
http://www.opticsinfobase.org/col/abstract.cfm?URI=col-11-1-013501


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979).
  2. W. P. Leemans, B. Nagler, A. J. Gonsalves, C. Toth, K. Nakamura, C. G. R. Geddes, E. Esarey, C. B. Schroeder, and S. M. Hooker, Nat. Phys. 2, 696 (2006).
  3. C. E. Clayton, J. E. Ralph, F. Albert, R. A. Fonseca, S. H. Glenzer, C. Joshi,W. Lu, K. A.Marsh, S. F. Martins, W. B. Mori, A. Pak, F. S. Tsung, B. B. Pollock, J. S. Ross, L. O. Silva, and D. H. Froula, Phys. Rev. Lett. 105, 105003 (2010).
  4. H. Lu, M. Liu, W. Wang, C. Wang, J. Liu, A. Deng, J. Xu, C. Xia, W. Li, H. Zhang, X. Lu, C. Wang, J. Wang, X. Liang, Y. Leng, B. Shen, K. Nakajima, R. Li, and Z. Xu, Appl. Phys. Lett. 99, 091502 (2011).
  5. T. Kameshima, W. Hong, K. Sugiyama, X. Wen, Y. Wu, C. Tang, Q. Zhu, Y. Gu, B. Zhang, H. Peng, S.-i. Kurokawa, L. Chen, T. Tajima, T. Kumita, and K. Nakajima, Appl. Phys. Express 1, 066001 (2008).
  6. S. Karsch, J. Osterhoff, A. Popp, T. P. Rowlands-Rees, Z. Major, M. Fuchs, B. Marx, R. H¨orlein, K. Schmid, L. Veisz, S. Becker, U. Schramm, B. Hidding, G. Pretzler, D. Habs, F. Gr¨uner, F. Krausz, and S. M. Hooker, New J. Phys. 9, 415 (2007).
  7. O. Lundh, J. Lim, C. Rechatin, L. Ammoura, A. Ben-smail, X. Davoine, G. Gallot, J. P. Goddet, E. Lefebvre, V. Malka, and J. Faure, Nat. Phys. 7, 219 (2011).
  8. J. Osterhoff, A. Popp, Z. Major, B. Marx, T. P. Rowlands-Rees, M. Fuchs, M. Geissler, R. Horlein, B. Hidding, S. Becker, E. A. Peralta, U. Schramm, F. Gruner, D. Habs, F. Krausz, S. M. Hooker, and S. Karsch, Phys. Rev. Lett. 101, 085002 (2008).
  9. N. A. M. Hafz, T. M. Jeong, I. W. Choi, S. K. Lee, K. H. Pae, V. V. Kulagin, J. H. Sung, T. J. Yu, K.-H. Hong, T. Hosokai, J. R. Cary, D.-K. Ko, and J. Lee, Nat. Photon. 2, 571 (2008).
  10. S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, and K. Krushelnick, Nature 431, 535 (2004).
  11. C. G. R. Geddes, C. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, Nature 431, 538 (2004).
  12. J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, Nature 431, 541 (2004).
  13. I. Kostyukov, A. Pukhov, and S. Kiselev, Phys. Plasmas 11, 5256 (2004).
  14. W. Lu, C. Huang, M. Zhou, W. B. Mori, and T. Katsouleas, Phys. Rev. Lett. 96, 165002 (2006).
  15. J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, and V. Malka, Nature 444, 737 (2006).
  16. H. Kotaki, I. Daito, M. Kando, Y. Hayashi, K. Kawase, T. Kameshima, Y. Fukuda, T. Homma, J. Ma, L. M. Chen, T. Z. Esirkepov, A. S. Pirozhkov, J. K. Koga, A. Faenov, T. Pikuz, H. Kiriyama, H. Okada, T. Shimomura, Y. Nakai, M. Tanoue, H. Sasao, D. Wakai, H. Matsuura, S. Kondo, S. Kanazawa, A. Sugiyama, H. Daido, and S. V. Bulanov, Phys. Rev. Lett. 103, 194803 (2009).
  17. K. Schmid, A. Buck, C. M. S. Sears, J. M. Mikhailova, R. Tautz, D. Herrmann, M. Geissler, F. Krausz, and L. Veisz, Phys. Rev. ST Accel. Beams 13 (2010).
  18. A. J. Gonsalves, K. Nakamura, C. Lin, D. Panasenko, S. Shiraishi, T. Sokollik, C. Benedetti, C. B. Schroeder, C. G. R. Geddes, J. van Tilborg, J. Osterhoff, E. Esarey, C. Toth, and W. P. Leemans, Nat. Phys. 7, 862 (2011).
  19. A. Pak, K. A. Marsh, S. F. Martins, W. Lu, W. B. Mori, and C. Joshi, Phys. Rev. Lett. 104, 025003 (2010).
  20. C. McGuffey, A. G. R. Thomas,W. Schumaker, T. Matsuoka, V. Chvykov, F. J. Dollar, G. Kalintchenko, V. Yanovsky, A. Maksimchuk, K. Krushelnick, V. Y. Bychenkov, I. V. Glazyrin, and A. V. Karpeev, Phys. Rev. Lett. 104, 025004 (2010).
  21. C. Xia, J. Liu, W. Wang, H. Lu, W. Cheng, A. Deng, W. Li, H. Zhang, X. Liang, Y. Leng, X. Lu, C. Wang, J. Wang, K. Nakajima, R. Li, and Z. Xu, Phys. Plasmas 18, 113101 (2011).
  22. J. S. Liu, C. Q. Xia, W. T. Wang, H. Y. Lu, C. Wang, A. H. Deng, W. T. Li, H. Zhang, X. Y. Liang, Y. X. Leng, X. M. Lu, C. Wang, J. Z. Wang, K. Nakajima, R. X. Li, and Z. Z. Xu, Phys. Rev. Lett. 107, 035001 (2011).
  23. B. B. Pollock, C. E. Clayton, J. E. Ralph, F. Albert, A. Davidson, L. Divol, C. Filip, S. H. Glenzer, K. Herpoldt, W. Lu, K. A. Marsh, J. Meinecke, W. B. Mori, A. Pak, T. C. Rensink, J. S. Ross, J. Shaw, G. R. Tynan, C. Joshi, and D. H. Froula, Phys. Rev. Lett. 107, 045001 (2011).
  24. S. F. Martins, R. A. Fonseca, W. Lu, W. B. Mori, and L. O. Silva, Nat. Phys. 6, 311 (2010).
  25. C. B. Schroeder, E. Esarey, C. G. R. Geddes, C. Benedetti, and W. P. Leemans, Phys. Rev. ST Accel. Beams 13, 101301 (2010).
  26. K. Nakajima, A. Deng, X. Zhang, B. Shen, J. Liu, R. Li, Z. Xu, T. Ostermayr, S. Petrovics, C. Klier, K. Iqbal, H. Ruhl, and T. Tajima, Phys. Rev. ST Accel. Beams 14, 091301 (2011).
  27. N. Blanchot, E. Bar, G. Behar, C. Bellet, D. Bigourd, F. Boubault, C. Chappuis, H. Coïc, C. Damiens-Dupont, O. Flour, O. Hartmann, L. Hilsz, E. Hugonnot, E. Lavastre, J. Luce, E. Mazataud, J. Neauport, S. Noailles, B. Remy, F. Sautarel, M. Sautet, and C. Rouyer, Opt. Express 18, 10088 (2010).
  28. T. Tajima, M. Kando, and M. Teshima, Prog. Theor. Phys. 125, 617 (2011).
  29. A. Deng, K. Nakajima, X. Zhang, H. Lu, B. Shen, J. Liu, R. Li, and Z. Xu, Laser Part. Beams 30, 281 (2012).
  30. A. Deng, K. Nakajima, J. Liu, B. Shen, X. Zhang, Y. Yu, W. Li, R. Li, and Z. Xu, Phys. Rev. ST Accel. Beams 15, 081303 (2012).
  31. X. M. Wang, S. A. Yi, R. Zgadzaj, N. Fazel, W. Henderson, Y.-Y. Chang, R. Korzekwa, V. Khudik, G. Shvets, H.-E. Tsai, C.-H. Pai, Z. Li, E. Gaul, M. Martinez, H. Quevedo, T. Borger, M. Spinks, M. Donovan, A. Bernstein, G. Dyer, T. Ditmire, and M. Downer, "Physics of electron acceleration beyond 1 GeV at the Texas Petawatt Laser," talk at the 15th Advanced Accelerator Concepts Workshop (2012).
  32. B. Hafizi, A. Ting, R. F. Hubbard, P. Sprangle, and J. R. Penano, Phys. Plasmas 10, 1483 (2003).
  33. C. B. Schroeder, C. Benedetti, E. Esarey, J. van Tilborg, and W. P. Leemans, Phys. Plasmas 18, 083103 (2011).
  34. B. Hafizi, A. Ting, P. Sprangle, and R. F. Hubbard, Phys. Rev. E 62, 4120 (2000).
  35. E. Esarey and W. P. Leemans, Phys. Rev. E 59, 1082 (1999).
  36. P. Sprangle, A. Ting, and C. M. Tang, Phys. Rev. A 36, 2773 (1987).
  37. P. Sprangle, B. Hafizi, and J. R. Penano, Phys. Rev. E 61, 4381 (2000).
  38. M. Liu, B. Zhou, Y. Yi, X. Liu, and L. Tang, Phys. Plasmas 14, 103104 (2007).
  39. M. Liu, R. Li, Z. Xu, and C.-J. Kim, Phys. Lett. A 373, 363 (2009).
  40. M. Chen, E. Esarey, C. B. Schroeder, C. G. R. Geddes, and W. P. Leemans, Phys. Plasmas 19, 033101 (2012).
  41. C. Chiu, S. Cheshkov, and T. Tajima, Phys. Rev. ST Accel. Beams 3, 101301 (2000).
  42. W. Lu, M. Tzoufras, C. Joshi, F. S. Tsung, W. B. Mori, J. Vieira, R. A. Fonseca, and L. O. Silva, Phys. Rev. ST Accel. Beams 10, 061301 (2007).
  43. J. D. Jackson, Classical Electrodynamics, 3rd Edition (John Wiley & Sons, New York, 1999).
  44. P. Michel, C. B. Schroeder, B. A. Shadwick, E. Esarey, and W. P. Leemans, Phys. Rev. E 74, 026501 (2006).
  45. C. G. Durfee, III and H. M. Milchberg, Phys. Rev. Lett. 71, 2409 (1993).
  46. P. Volfbeyn, E. Esarey, and W. P. Leemans, Phys. Plasmas 6, 2269 (1999).
  47. Y. F. Xiao, H. H. Chu, H. E. Tsai, C. H. Lee, J. Y. Lin, J. Wang, and S. Y. Chen, Phys. Plasmas 11, L21 (2004).
  48. Y. Ehrlich, C. Cohen, A. Zigler, J. Krall, P. Sprangle, and E. Esarey, Phys. Rev. Lett. 77, 4186 (1996).
  49. M. Liu, A. Deng, J. Liu, R. Li, J. Xu, C. Xia, C. Wang, B. Shen, Z. Xu, and K. Nakajima, Rev. Sci. Instrum. 81, 036107 (2010).
  50. T. Hosokai, M. Kando, H. Dewa, H. Kotaki, S. Kondo, N. Hasegawa, K. Nakajima, and K. Horioka, Opt. Lett. 25, 10 (2000).
  51. S. M. Hooker, D. J. Spence, and R. A. Smith, J. Opt. Soc. Am. B 17, 90 (2000).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited