OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 2, Iss. 11 — Nov. 10, 2004
  • pp: 647–649

High power AlGaInP laser diodes with zinc-diffused window mirror structure

Yun Xu, Qing Cao, Xiaopeng Zhu, Guohua Yang, Qiaoqiang Gan, Guofeng Song, Liang Guo, Yuzhang Li, and Lianghui Chen  »View Author Affiliations

Chinese Optics Letters, Vol. 2, Issue 11, pp. 647-649 (2004)

View Full Text Article

Acrobat PDF (232 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


The technology of zinc-diffusion to improve catastrophic optical damage (COD) threshold of compressively strained GaInP/AlGaInP quantum well laser diodes has been introduced. After zinc-diffusion, about 20-?m-long region at each facet of laser diode has been formed to serve as the window of the lasing light. As a result, the COD threshold has been significantly improved due to the enlargement of bandgap by the zinc-diffusion induced quantum well intermixing, compared with that of the conventional non-window structure. 40-mW continuous wave output power with the fundamental transverse mode has been realized under room temperature for the 3.5-?m-wide ridge waveguide diode. The operation current is 84 mA and the slope efficiency is 0.74 W/A at 40 mW. The lasing wavelength is 656 nm.

© 2005 Chinese Optics Letters

OCIS Codes
(140.3570) Lasers and laser optics : Lasers, single-mode
(140.5960) Lasers and laser optics : Semiconductor lasers
(140.7300) Lasers and laser optics : Visible lasers

Yun Xu, Qing Cao, Xiaopeng Zhu, Guohua Yang, Qiaoqiang Gan, Guofeng Song, Liang Guo, Yuzhang Li, and Lianghui Chen, "High power AlGaInP laser diodes with zinc-diffused window mirror structure," Chin. Opt. Lett. 2, 647-649 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. K. Kobayashi, S. Kawata, and A. Gomyo, Electron. Lett. 21, 931 (1985).
  2. Y. Ueno, H. Fujii, K. Kobayashi, K. Endo, A. Gomyo, K. Hara, S. Kawata, T. Yuasa, and T. Suzuki, Jpn. J. Appl. Phys. 29, L1666 (1990).
  3. A. Valster, A. T. Meney, J. R. Downes, D. A. Faux, A. R. Adams, A. A. Brouwer, and A. J. Corbijn, IEEE J. Sel. Top. Quantum Electron. 3, 180 (1997).
  4. S. Kamiyama, Y. Mori, Y. Takahashi, and K. Ohnaka, Appl. Phys. Lett. 58, 2595 (1991).
  5. K. Itaya, M. Ishikawa, H. Okuda, Y. Watanabe, K. Nitta, H. Shiozawa, and Y. Uematsu, Appl. Phys. Lett. 53, 1363 (1998).
  6. Y. Ueno, H. Fujii, H. Sawano, K. Kobayashi, K. Hara, A. Gomyo, and K. Endo, IEEE J. Quantum Electron. 29, 1851 (1993).
  7. Y. Ueno, Jpn. J. Appl. Phys. 37, L646 (1998).
  8. S. Honda, T. Miyake, T. Ikegami, K. Yagi, Y. Bessho, R. Hiroyama, M. Shono, and M. Sawada, Electron. Lett. 36, 1284 (2000).
  9. H. O. Yonezu, M. Ueno, T. Kamejima, and I. Hayashi, IEEE J. Quantum Electron. 15, 775 (1979).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited