OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 2, Iss. 9 — Sep. 10, 2005
  • pp: 549–551

Performance improvement of 10-Gb/s XGM wavelength conversion by using polarization control structure

Weiwei Shi, Hanyi Zhang, Yili Guo, Keying Wu, Xiang Teng, and Langbin Hu  »View Author Affiliations

Chinese Optics Letters, Vol. 2, Issue 9, pp. 549-551 (2005)

View Full Text Article

Acrobat PDF (474 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


By utilizing the cross polarization modulation effect in semiconductor optical amplifier (SOA), the extinction ratio of cross gain modulation (XGM) wavelength conversion was enhanced, the pattern effect was significantly reduced, and the power penalty of wavelength conversion was reduced by 5 dB simultaneously. Furthermore, by adjusting the settings of polarization controllers, both inverted and non-inverted wavelength conversion can be achieved right in the same wavelength converter.

© 2005 Chinese Optics Letters

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(250.5980) Optoelectronics : Semiconductor optical amplifiers

Weiwei Shi, Hanyi Zhang, Yili Guo, Keying Wu, Xiang Teng, and Langbin Hu, "Performance improvement of 10-Gb/s XGM wavelength conversion by using polarization control structure," Chin. Opt. Lett. 2, 549-551 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. S. J. B. Yoo, J. Lightwave Technol. 14, 955 (1996).
  2. M. Asghari, I. H. White, and R. V. Penty, J. Lightwave Technol. 15, 1181 (1997).
  3. K. Obermann, S. Kindt, D. Breuer, and K. Petermann, J. Lightwave Technol. 16, 78 (1998).
  4. C. Joergensen, S. L. Danielsen, T. Durhuus, B. Mikkelsen, K. E. Stubkjaer, N. Vodjdani, F. Ratovelomanana, A. Enard, G. Glastre, D. Rondi, and R. Blondeau, IEEE Photon. Technol. Lett. 8, 521 (1996).
  5. L. H. Spiekman, U. Koren, M. D. Chien, B. I. Miller, J. M. Wiesenfeld, and J. S. Perino, IEEE Photon. Technol. Lett. 9, 1349 (1997).
  6. M. W. K. Mak, H. K. Tsang, and K. Chan, IEEE Photon. Technol. Lett. 12, 525 (2000).
  7. T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, J. Lightwave Technol. 14, 942 (1996).
  8. C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, Appl. Phys. Lett. 63, 1170 (1993).
  9. E. S. Awad, P. S. Cho, C. Richardson, N. Moulton, and J. Goldhar, IEEE Photon. Technol. Lett. 14, 1378 (2002).
  10. H. Soto, D. Erasme, and G. Guekos, IEEE Photon. Technol. Lett. 11, 970 (1999).
  11. Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, IEEE Photon. Technol. Lett. 15, 90 (2003).
  12. M. F. C. Stephens, M. Asghari, R. V. Penty, and I. H. White, IEEE Photon. Technol. Lett. 9, 449 (1997).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited